Lesson 6: Functions and Quadratic Equations

Konstantin Miagkov

Definition 1.
A **function** from set X to set Y is a rule that for each element $x \in X$ determines an element from the set Y, usually denoted $f(x)$.

Definition 2.
Let $f, g : \mathbb{R} \to \mathbb{R}$ be functions. We write $f > g$ ($f \geq g$) if for every $x \in \mathbb{R}$: $f(x) > g(x)$ ($f(x) \geq g(x)$).

Problem 1.
Determine if one (or none) of $f \geq g$, $f \leq g$ holds:

a) $f(x) = 2x + 3$, $g(x) = 2x + 1$

b) $f(x) = 2x^2$, $g(x) = 3x^2$

c) $f(x) = x + 4$, $g(x) = x^2$

d) $f(x) = 2x + 1$, $g(x) = -x^2$

Problem 2.
A function $f : \mathbb{R} \to \mathbb{R}$ is called **even** if $f(x) = f(-x)$ for all $x \in \mathbb{R}$. Similarly, a function is called **odd** if $f(x) = -f(-x)$ for all x.

a) Find which of the following functions are odd, even or neither: $x \cdot |x|; |x + 1| - |x - 1|; |x + 1| + |x - 1|; 3x - x^2$.

b) Show that any function from \mathbb{R} to \mathbb{R} can be uniquely written as a sum of an even and an odd function.

Problem 3.
Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(2x + 1) = 4x^2 + 14x + 7$.

Problem 4.
Five integers are written on the board – three coefficients of a quadratic equation and two roots in arbitrary order. After one of the numbers is erased, the numbers 2, 3, 4, −5 are left. What number was erased?

Problem 5.
Let $ABCD$ be a quadrilateral such that there exists a circle tangent to all of its four sides. Such a quadrilateral is called **circumscribed**. Show that $AB + CD = AD + BC$.