PROBABILITY

Counting

Multiple Stages With replacement

HOW MANY PASSWORD ARE POSSIBLE STARTING WITH TWO LETTERS FOLLOWED BY FOUR NUMERALS?

- HOW MANY PASSWORD ARE POSSIBLE STARTING WITH TWO LETTERS FOLLOWED BY FOUR NUMERALS?

• (26)(26)(10)(10)(10)(10) = 6,760,000

WITHOUT REPLACEMENT

– How many three letter words from { a,b,c,d,e} without using a letter more than once?

- How many three letter words from {
 a,b,c,d,e} without using a letter more than
 once?
- Ans. (5)(4)(3) = 60

With restrictions

– How many three letter words from { a,b,c,d,e} without using a letter more than once? How many three letter words from { a,b,c,d,e} without using a letter more than once and a vowel in the middle?

Constructive counting (Cases) – How many three digit numbers have one zero?

- How many three digit numbers have one zero?
- Case 1 zero in the middle (9)(1)(9) = 81
- Case 2 zero on the right (9)(9)(1) = 81
- (9)(1)(9) = 81(9)(9)(1) = 81

• Total 81 +81 =162

Complementary (finding opposite first)

 How many ways to seat four boys and three girls in a row so that at least two boys sit together?

- How many ways to seat four boys and three girls in a row so that at least two boys sit together?
- Ans. Only one way for two boys <u>not</u> to sit together: BGBGBGB. There are 4! ways to arrange the boys and 3! Ways to arrange the girls. (4!)(3!) = (24)(6) = 144. There are 7! = 5040 ways to seat seven. Thus 5040-144 = 4896 ways.

Multiple methods

 In how many ways may 3 officers (Pres. ,V.P., Sec) be picked from a 12 member club, If AI and Bob won't serve together?

- In how many ways may 3 officers (Pres. ,V.P., Sec) be picked from a 12 member club, If AI and Bob won't serve together?
- Ans. Ways to pick three of 12: (12)(11)(10)
 =1320
- Ways to pick three with AI and Bob: (3)(2)(10) =60. Thus 1320-60 = 1260 ways to pick without both.

Overcounting then correcting

 How many ways the arrange the letters of Mississippi?

- How many ways tho arrange the letters of Mississippi?
- Ans. There are 11! ways to arrange the letters. There are 4! ways to arrange the "s" and "I", and 2! For "p". Thus 11!/[(4!)(4!)(2!) =34650 diferent arrangements.

Symmetry

 How many ways can 6 people be seated at a round table. It does not matter who is seated north. What matters is who is on a persons left and right.

- How many ways can 6 people be seated at a round table. It does not matter who is seated north. What matters is who is on a persons left and right
- Ans. Take one person (say A) seat her at a definite place (say north). This leaves 5! Ways to seat the others. Thus there are (n-1)! Ways to seat n at a round table.

Combinations (order does not matter)

 In How many ways can a committee of four be picked from a club of ten.

- In How many ways can a committee of four be picked from a club of ten.
- Ans. There are (10)(9)(8)(7) way to pick, but there are 4! Ways to arrange each pick so there are duplications. Thus there are (10)(9)(8)(7)/4! Different committees. Combinations are represented by 10C4.

Probability

- If all outcomes equally likely.
 P(success) = (# of successful outcomes)/(# of possible outcomes).
- e.g. Probability of drawing a face card from a deck of playing cards : 12 face cards/ (52 cards) = 3/13.

Multistep problem

 Find the probability of drawing a full house (three of one rank and two of another rank) in receiving 5 cards from a deck of 52 cards.

- Find the probability of drawing a full house (thre rank and two of another rank) in receiving 5 car a deck of 52 cards
- Ans. Method one:
- Count of successes divided by count of possib
- Successes : For the three of a kind there are 1: and ${}_4C_3$ ways of picking three. (13)(4)=52 su For two of a kind 12 ranks and ${}_4C_2$. (12)(6)=72successes: (52)(72)
- Possibilities: 52C5.
- Prob.= (52)(72)/[(52)(51)(50)(49)(48)/5!] = 6/4

- Method two:
- Product of possibilities
- Find probability of <u>one</u> successful order.
- Then consider arrangements.
- Pick three alike followed by two alike
- (52/52)(3/51)(2/50)(48/49)(3/48) = 3/20825
- 5! /[(3!)(2!)] = 20 arrangements
- Prob. = (20)(3)/20825 = 6/4165

Using Algebra

- A bag has 3 red and k marbles.
- The probability is ½ that 2 marbles chosen at random will both be the same color. Find all values of k.

- A bag has 3 red and k marbles.
- The probability is ½ that 2 marbles chosen at random will both be the same color. Find all values of k.
- Ans.
- Case 1: both red
- $[3/(3+k)][2/(2+k)] = 6/(k^2+5k+6)$
- Case 2: both white
- $[k/(3+k)][(k-1)/(2+k)] = (k^2-k)/(k^2+5k+6)$
- Sum (k²-k + 6)/(k²+5k +6) = ¹/₂ Solution k=1,6

Complementary

 If the probability of catching a fish is 1/3 each day. What is the least number of days you need to fish to have at least a 90% chance of catching a fish?

- If the probability of catching a fish is 1/3 each day. What is the least number of days you need to fish to have at least a 90% chance of catching a fish?
- Ans. You have 2/3 chance not to catch a fish each day. Find n such that (2/3)ⁿ < 0.1
- n = 5 1- $(2/3)^5 = 311/343 = .9067$

 Cal and Dan each sit randomly in a row of 7 chairs. What is the probability that they don't sit together?

- Cal and Dan each sit randomly in a row of 7 chairs. What is the probability that they don't sit together?
- Ans. 7C₂ = 21 ways they can pick two chairs. There are 6 ways they can sit together; (1,2) (2,3) (3,4) ... (6,7).
- Probability of sitting together. 6/21 = 2/7.
- Probability of not sitting together 1-2/7 = 5/7

Geometry

• A point is randomly picked in a 4cm X 4cm square. A circle of 1 cm radius is draw with the point as center. What is the probability that the circle is entirely within the square?

- A point is randomly picked in a 4cm X 4cm square. A circle of 1 cm radius is draw with the point as center. What is the probability that the circle is entirely within the square?
- ANS. Consider lines in the square 1cm from each side. This forms a 2cm X 2cm square which is the loci for the center of the circles that are within the larger square. Thus the probability is the ratio of the areas. 4/16 = 1/4

Expected return

 A dart board consists of of concentric circles of radii 1cm, 2cm, and 3cm. If the dart lands in the inner circle you get 25 cents, between the 1st and 2nd 10 cents, and between the 2nd and 3rd 5 cents. If the dart lands randomly on the board, what is your expected return?

- A dart board consists of of concentric circles of radii 1cm, 2cm, and 3cm. If the dart lands in the inner circle you get 25 cents, between the 1st and 2nd 10 cents, and between the 2nd and 3rd 5 cents. If the dart lands randomly on the board, what is your expected return?
- Ans. The 25 cent area is 1π, the 10 cent (4-1)π, and the 5 cent area is (9-4)π. The expected return is 25(1/9) + 10(3/9) + 5(5/9) = 80/9 cents.

Binomial expansion

- If p is the probability of an event occurring during a single trial and q is the probability of it not occurring (i.e. 1-p), then (p + q)ⁿ can be used to find the probability of any number of p's from 0 to n occurring in n trials.
- For example: if a spinner lands on A one third of the time, What is the probability of getting four A's in five spins?

- For example: if a spinner lands on A one third of the time, What is the probability of getting four A's in five spins?
- Ans. $(1/3 + 2/3)^5$ yields ${}_5C_5(1/3)^5(2/3)^0$ for 5 p's and ${}_5C_4(1/3)^4(2/3)^1 = 10/243$ for 4 p's.

- 11. A box contains exactly five chips, three red and two white. Chips are randomly
- removed one at a time without replacement until all the red chips are drawn or
- all the white chips are drawn. What is the probability that the last chip drawn
- is white?
- (A) 3/10
- (B) 2/5
- (C) 1/2
- (D) 3/5
- (E)7/10

- 16. Tina randomly selects two distinct numbers from the set {1, 2, 3, 4, 5}, and Sergio
- randomly selects a number from the set {1, 2, ..., 10}. The probability that
- Sergio's number is larger than the sum of the two numbers chosen by Tina is
- (A) 2/5 (B) 9/20 (C) 1/2 (D) 11/20 (E) 24/25

- 22. Triangle ABC is a right triangle with angle ACB as its right angle, m angle ABC = 60○,
- and AB = 10. Let P be randomly chosen inside \triangle ABC, and extend BP to
- meet AC at D. What is the probability that BD > $5\sqrt{2?}$
- (A) (2 − √ 2)/2
- (B) 1/3
- (C) $(3 \sqrt{3})/3$
- (D) 1/2
- $(E)(5 \sqrt{5})/5$

- 18. A point P is randomly selected from the rectangular region with vertices (0, 0), (2, 0),
- (2, 1), (0, 1). What is the probability that P is closer to the origin than it is to
- the point (3, 1)?
- (A) 1/2
- (B) 2/3
- (C) 3/4
- (D)4/5
- (E) 1

- 15. Brenda and Sally run in opposite directions on a circular track, starting at
- diametrically opposite points. They rst meet after Brenda has run 100 meters.
- They next meet after Sally has run 150 meters past their rst meeting point.
- Each girl runs at a constant speed. What is the length of the track in meters?
- (A) 250 (B) 300 (C) 350 (D) 400 (E) 500

- 20. Select numbers a and b between 0 and 1 independently and at random, and let
- c be their sum. Let A, B, and C be the results when a, b, and c, respectively,
- are rounded to the nearest integer. What is the probability that A + B = C?
- (A) 1/4
- (B) 1/3
- (C) 1/2
- (D) 2/3
- (E) 3/4

- 22. Three mutually tangent spheres of radius 1 rest on a horizontal plane. A sphere
- of radius 2 rests on them. What is the distance from the plane to the top of the
- larger sphere?
- (A) 3 + $\sqrt{30/2}$
- (B) 3 +√ 69/3
- (C) $3 + \sqrt{123/4}$
- (D) 52/9
- (E) 3 + 2√ 2

- 24. A plane contains points A and B with AB = 1. Let S be the union of all disks of radius 1 in the plane that cover AB. What is the area of S?
- (A) 2π + √ 3
- (B) 8/3π
- (C) $3 \pi \sqrt{3/2}$
- (D) 10π √ 3
 (E) 4π- 2√ 3

- 25. For each integer n ≥ 4, let a_n denote the base-n number 0:133n. The product
- a_4a_5 : : : a_{99} can be expressed as m/n! , where m and n are positive integers and n
- is as small as possible. What is the value of m?
- (A) 98 (B) 101 (C) 132 (D) 798 (E) 962