The Geometry of Point Masses

October 20, 2008

Consider two point masses and their center of mass (the point of balance). Recall the Archemes' principle of lever:

The product of the mass and the distance to the center of mass is the same for both point masses:

$$
m_{1} \cdot d_{1}=m_{2} \cdot d_{2}
$$

Here are the properties of the center of mass of a system of points:

1. Any finite set of point masses has a center of mass. The center of mass is unique.
2. For two point masses, their center of mass lies on the segment joining the points and dividing the segment in the ratio which is inverse proportional to the corresponding masses.
3. The position of the center of mass of a system of point masses is not changed by replacing several point masses from the system with their total mass positioned at the center of mass of this subsystem.

Let $m P$ denote the point mass m positioned at point P. Then:

1. $m_{1} P_{1}=m_{2} P_{2}$ iff $m_{1}=m_{2}$ and $P_{1}=P_{2}$.
2. $m_{1} P_{1}+m_{2} P_{2}=\left(m_{1}+m_{2}\right) P$, where P is the point on the segment $P_{1} P_{2}$ such that $\left|P_{1} P\right| \cdot m_{1}=\left|P_{2} P\right| \cdot m_{2}$. In other words, $\left|P P_{1}\right|:\left|P P_{2}\right|=m_{2}$: m_{1}.

The point P above is called the center of mass of the point masses $m_{1} P_{1}$ and $m_{2} P_{2}$.

WARM-UP PROBLEMS:

1. Let Z be the center of mass of two point masses, $3 P$ and $5 Q$. Find m and the ratio $|P Z|:|Z Q|$.
2. Let Z be the center of mass of two point masses, $7 A$ and $m P$. Find m and the ratio $|A Z|:|Z P|$ if $7 A=m P=10 Z$.

Solve the following geometry problems using point masses:

1. Let $A D$ be the median bisecting the side $B C$ in $\triangle A B C$. Let $Z \in A D$ be a point on $A D$ such that $|A Z|=|Z D|$. Find the ratio in which the line going through B and Z divides the side $A C$.
2. Let M be the point on the side $A C$ of $\triangle A B C$ such that $|A M|=\frac{1}{3}|A C|$. Let N be the point on extension of the side $B C$ beyond point B so that $|B N|=|N C|$. Let P be point of intersection of $A B$ with $M N$. Find the ratios $|A P|:|P B|$ and $|N P|:|P M|$.
3. Let $A B C D$ be a convex quadrilateral. Let K, L, M, N be the midpoints of the sides $A B, B C, C D$ and $D A$ respectively. Show that the point O of intersection of $K M$ and $L N$ is the midpoint of both of these segments. Show that O is also the midpoint of the segment connecting the midpoints of diagonals of the quadrilateral.
4. In $\triangle A B C, D$ is the midpoint of $B C$ and E is divides $A C$ in the ratio $1: 3$. Let $K=B E \cap A D$. Find the ratios $|A K|:|K D|$ and $|B K|:|K E|$.
5. A line goes through the vertex A of triangle $\triangle A B C$ and the midpoint L of the median $B B_{1}$. In what proportion does this line divide the median $C C_{1}$? (Hint: This problem can not be solved in one step. First, select the masses so that L is center of mass. Using this, find the ration in which the extension of $A L$ divides $B C$. Second, after you know the ratio, select new masses so that the point K of intersection of $A L$ amd $C C_{1}$ is the center of mass, and finish the problem).
6. Let $A B C D$ be a parallelogram. Let l be the line going through D and crossing the segment $A B$ in such a way that $|A K|=\frac{1}{n}|A B|$. In what ratio does this line divide the diagonal $A C$?
7. (Varignon's Theorem) If the midpoints of consecutive sides of a quadrilateral are connected, the resulting quadrilateral is a parallelogram.
8. Let $A B C D$ be a quadrilateral such that a circle can be insribed into it. Let $M \in A B, N \in B C, P \in C D$ and $Q \in A D$ be the points where the sides of the quadrilateral are tangent to the circle. Suppose that $|A M|=a$, $|B N|=b,|C P|=c$ and $|D Q|=d$. Let $Z=M P \cap N Q$. Find he ratios $|M Z|:|Z P|$ and $|Q Z|:|Z N|$.
9. Let M and N be the points on the sides $A C$ and $B C$ of $\triangle A B C$ respectively, so that $|A M|:|M C|=3: 1$ and $|B P|:|P C|=1: 2$. Let $Q=A P \cap B M$. Given that area of $\triangle B P Q$ is equal to 1 square inch, find the are of $\triangle A B C$.
10. Let $P A B C$ be the right triangular pyramid. (A pyramid is "right" its base is an equilateral triangle, and the altitude from the apex goes through the center of this triangle). Assume that a plane α intersects the pyramid in such a way that it divides the sides $P A, P B$ and $P C$ in the ratios 2:3, $3: 2$, and $4: 1$ respectively. Find the ratio in which the plane divides the altitude $P M$ of the pyramid.
