When converting numbers with base greater than 10, we must remember that letters are used instead of digits. (A) Consider the conversion between base 16 and base 10. Example: What is $$1FDA_{16}$$ in base 10? $1FDA_{16} = \mathbf{1} \cdot 16^3 + \mathbf{15} \cdot 16^2 + \mathbf{13} \cdot 16^1 + \mathbf{10} \cdot 16^0$ $1FDA_{16} = 1 \cdot 4096 + 15 \cdot 256 + 13 \cdot 16 + 10$ $1FDA_{16} = 8154_{10}$ (1) Computer the following powers of 16. (a) $$16^1 = 16$$ (b) $$16^2 = 256$$ (c) $$16^3 = 4006$$ (d) $$16^4 = 65536$$ (2) Convert the following numbers between base 16 and base 10: (a) What is $1984_{10}$ in base 16? 1984: $$16 = 124 R0$$ $124: 16 = 7 R 12$ $12 Is C In base 16$ $7: 16 = 0 R 7$ (b) What is $4813_{10}$ in base 16? $$4813:16 = 300 R 13$$ D $300:16 = 18 R 12$ C $18:16 = 1 R 2$ 2 So, $12 CD$ $1:16 = 0 R 1$ 1 (c) What is 1984<sub>16</sub> in base 10? $$1 \times 16^{3} + 9 \times 16^{2} + 8 \times 16 + 4 \times 16^{\circ}$$ $$= 4096 + 9 \times 256 + 8 \times 16 + 4$$ $$= 4096 + 2304 + 128 + 4 = 6532$$ (d) What is $17EC_{16}$ in base 10? $$1 \times 16^{3} + 7 \times 16^{2} + 14 \times 16 + 12 \times 16^{3}$$ $$= 4096 + 7 \times 256 + 14 \times 16 + 12$$ $$= 4096 + 1792 + 224 + 12 = 6124$$ Sometimes, we can also convert numbers with different bases without looking at base 10 intermediates. This works very well when the bases are powers of each other. (B) Let us start with the conversion between base 2 and base 4. Since $4 = 2^2$ , we can convert consecutive pairs of digits in base 2 to single digits in base 4. Conversely, we can convert each digit in base 4 to a pair of digits in base 2. **Example 1**: What is $12_4$ in base 2? $12_4 = 1 \cdot 4^1 + 2 \cdot 4^0 = 1 \cdot 4 + 2 \cdot 1 = 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 110_2$ Another way to do this is to look at the digits individually, $1_4 = 1_2$ and $2_4 = 10_2$ Thus, $12_4 = 110_2$ ## Example 2: What is $11011001_2$ in base 4? To convert the given number, we separate the number in pairs of digits starting from the right. If the number has an odd number of digits, we can place a 0 in the beginning. We can then convert each pair of digits to base 4. For instance, $$\begin{array}{l} 100_2 = [01] \, [00] \,_2 = [1] \, [0]_4 = 10_4 \\ 1000_2 = [10] \, [00] \,_2 = [2] \, [0]_4 = 20_4 \\ \text{Thus, } 11011001_2 = [11] \, [01] \, [10] \, [01]_2 = [3] \, [1] \, [2] \, [1]_4 = 3121_4 \end{array}$$ (1) Explain why $1_2 = 1_4$ . In bas $$10$$ , $1 \times 2^{\circ} = 1$ $1 \times 4^{\circ} = 1$ So, $1 = 1 + 1$ (2) Explain why $10000_2 = 100_4$ . - (3) Convert the following numbers between base 2 and base 4: - (a) What is 2222<sub>4</sub> in base 2? $$2x4^{3} + 2x4^{2} + 2x4^{4} + 2x4^{6}$$ $$2x2^{6} + 2x2^{4} + 2x2^{2} + 2x2^{2}$$ $$= 2^{7} + 2^{5} + 2^{3} + 2^{4}$$ $$= 10101010_{2}$$ (b) What is 11232<sub>4</sub> in base 2? $$|x49+1x43+2x42+3x4+2x43$$ = 1x2<sup>8</sup>+1x2<sup>6</sup>+2x2<sup>9</sup>+(2+1)2<sup>2</sup>+2x2<sup>9</sup> = 2<sup>8</sup>+2<sup>6</sup>+2<sup>5</sup>+2<sup>3</sup>+2<sup>2</sup>+2<sup>1</sup> = 101101110<sub>2</sub> (c) What is $110101_2$ in base 4? (d) What is 10110112 in base 4? (C) Next let us consider the conversion between base 2 and base 8. Since $8 = 2^3$ , we can convert consecutive triplets of digits in base to single digits in base 8. Conversely, we can convert each digit in base 8 to three digits in base 2. ## Example 1: What is 1001011<sub>2</sub> in base 8? To convert the given number, we separate the number in sets of three digits starting from the right. If the last set does not have three digits, we can place one or two 0s in the beginning as necessary. We can then convert each set of three digits to base 8. $1001011_2 = [001] [001] [011]_2 = [1] [1] [3]_8 = 113_8$ **Example 2**: What is $531_8$ in base 2? $531_8 = [5] [3] [1]_8 = [101] [011] [001]_2 = 101011001_2$ - (1) Convert the following numbers between base 2 and base 8: - (a) What is 547<sub>8</sub> in base 2? $$[5][4][7]_{8} = [101][100][111]_{2}$$ $$= 101100111_{2}$$ (b) What is 3700<sub>8</sub> in base 2? (c) What is 110001011<sub>2</sub> in base 8? (d) What is 111100111<sub>2</sub> in base 8? (D) Consider the conversion between base 2 and base 16. Since $16 = 2^4$ , we can convert consecutive sets of four digits in base 2 to single digits in base 16. Conversely, we can convert each digit in base 16 to four digits in base 2. **Example 1**: What is 1011100011<sub>2</sub> in base 16? To convert the given number, we separate the number in sets of four digits starting from the right. If the last set does not have four digits, we can place one, two or three 0s in the beginning as necessary. We can then convert each set of four digits to base 16. $\begin{array}{l} 1011100011_2 = [0010] \, [1110] \, [0011]_2 = & [2] \, [14] \, [3]_{16} = & [2] \, [E] \, [3]_{16} = 2E3_{16} \\ \textbf{Example 2: What is } EE8_{16} \text{in base 2?} \\ EE8_{16} = & [1110] \, [1110] \, [1000]_2 = & 1110111010001_2 \end{array}$ (1) Convert the following numbers between base 2 and base 16: (a) What is 1234<sub>16</sub> in base 2? (b) What is $ABCD_{16}$ in base 2? (c) What is 1111011101111<sub>2</sub> in base 16? (d) What is 101111101100111<sub>2</sub> in base 16? (2) Convert the following numbers between base 3 and base 9: (a) What is 3489 in base 3? $$[3](4)(8)q = [10](11)[22]_3$$ = $101122_3$ (b) What is 2028<sub>9</sub> in base 3? $$[2](0)(2](8)q$$ = $[02][00][02][22]_3$ = $2000222_3$ (c) What is $2102_3$ in base 9? $$(21) (02)_3 = [77[2]_9$$ = $729$ (d) What is 122110021<sub>3</sub> in base 9? $$[01)[22][11][00][21]_3$$ $$= [1][8][4][0][7]_4$$ $$= 184079$$ (E) Consider the conversion between base 8 and base 16 via base 2. **Example:** What is $$FEA_{16}$$ in base 8? $FEA_{16} = [1111][1110][1010]_2 = [1111][1111][1011][010]_2 = [7][7][5][2]_8 = 7752_8$ (1) Convert the following numbers between base 8 and base 16: (a) What is $4AE_{16}$ in base 8? $$CYD(A)(E)_{16} = [0100)(1010)(1110)_{2}$$ $$= [010)(010)(1010)(110)_{2}$$ $$= [2](2)(5)(6)_{8}$$ $$= 22668$$ (b) What is $ACFD1_{16}$ in base 8? (d) What is 4176<sub>8</sub> in base 16? | 1 | | | | | | | | | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|----------|---|---|---|---|---|----|---|--------| | | · | ٠ | | | | | | | | | | | | | | | • | | | | | | | | | 新原产业 W | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | | · . | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | - | | | | | Action for the first control of o | | | | | | | • | | | | | | | - The section of | | | | ***.<br> | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | • | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | • | · | | | • | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | | ٠ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | ٠ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | · | | | | | | | | e : | | | | | | e. | | | | | | | | | | | | | | | | | | | | | | • | | | | • | | | • | | | | | | | | • | | | | | | | |