
Oleg Gleizer prof1140g@math.ucla.edu

Division Algorithm

Problem 1 Input: (4,2).

Cycle 1

$$p = q = q$$

Is the statement q < b true or false?

 $Cycle\ 2$

$$p = q =$$

Is the statement q < b true or false?

 $Cycle\ 3$

$$p = q =$$

Is the statement q < b true or false?

Output:
$$(p,q) =$$

What does the output mean?

Problem 2 Input: (2,3).

Cycle 1

$$p = q =$$

Is the statement q < b true or false?

Output:
$$(p,q) =$$

What does the output mean?

Problem 3 *Input:* (8, 3).

Cycle 1

$$p = q =$$

Is the statement q < b true or false?

 $Cycle\ 2$

$$p = q =$$

Is the statement q < b true or false?

 $Cycle\ 3$

$$p = q =$$

Is the statement q < b true or false?

Output:
$$(p,q) =$$

What does the output mean?

Let us switch to the binaries.

Problem 4 *Input:* (1011, 100).

Cycle 1

$$p = q =$$

Is the statement q < b true or false?

 $Cycle\ 2$

$$p = q =$$

Is the statement q < b true or false?

 $Cycle\ 3$

$$p = q = q$$

Is the statement q < b true or false?

Output:
$$(p,q) =$$

What does the output mean?

Let's check...

$$1011_2 =$$
 $decimal value please$ $100_2 =$ $decimal value please$

Divide the first decimal number by the second (with the remainder) and see if everything works out right.