Oleg Gleizer
prof1140g@math.ucla.edu

Division Algorithm

Problem 1 Input: $(4,2)$.

Cycle 1
$p=\quad q=$
Is the statement $q<b$ true or false?

Cycle 2
$p=\quad q=$
Is the statement $q<b$ true or false?

Cycle 3
$p=\quad q=$
Is the statement $q<b$ true or false?
Output: $(p, q)=$
What does the output mean?

Problem 2 Input: $(2,3)$.
Cycle 1
$p=\quad q=$
Is the statement $q<b$ true or false?
Output: $(p, q)=$
What does the output mean?

Problem 3 Input: $(8,3)$.
Cycle 1
$p=\quad q=$
Is the statement $q<b$ true or false?
Cycle 2
$p=\quad q=$
Is the statement $q<b$ true or false?

Cycle 3
$p=\quad q=$
Is the statement $q<b$ true or false?
Output: $(p, q)=$
What does the output mean?

Let us switch to the binaries.

Problem 4 Input: $(1011,100)$.
Cycle 1
$p=\quad q=$
Is the statement $q<b$ true or false?
Cycle 2
$p=\quad q=$
Is the statement $q<b$ true or false?

Cycle 3
$p=\quad q=$
Is the statement $q<b$ true or false?
Output: $(p, q)=$
What does the output mean?

Let's check...
$1011_{2}=$
decimal value please
$100_{2}=$
decimal value please
Divide the first decimal number by the second (with the remainder) and see if everything works out right.

