Problem 13 Find the permutation $\sigma \circ \delta$. If needed, use the pictorial representation as above.

$$\sigma \circ \delta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$\delta \begin{pmatrix} (2 & 3) & & & & \\ (2 & 1 & 3) & & & & \\ (3 & 2 & 1) & & & & \\ (3 & 2 & 1) & & & & \\ & & & & & & \\ & & & & & & \\ \end{pmatrix}$$

Note: When calculating to o f, it is important to know that you should consider the operation on the right-hand side first, in this case f.

Also, for the second operation, it may work better if you consider numbers in its operation, i.e. $\sigma = (\frac{123}{312})$, as place holders.

$$Is \sigma \circ \delta = \delta \circ \sigma?$$

$$\sigma \circ \delta = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \delta \circ \sigma$$

Note that although some particular permutations may commute, multiplication of permutations in general is not a commutative operation!

Quick check;

$$\frac{Quick}{\sigma \circ 8 = (\frac{1}{2}, \frac{2}{43}) = 8 \circ \sigma$$

Problem 14 Find two non-trivial permutations of four elements that do commute.

One example:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} \qquad \delta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$$

Problem 15 Find the product $\delta \circ \sigma$ of the following two permutations.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \qquad \delta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

If you need to use a pictorial representation as a tool, take the one on page 5 and add a diamond \Diamond as the fourth figure.

$$\delta \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

Problem 16 Find the product $\sigma \circ \delta$ of the permutations

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \quad and \quad \delta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

from Problem 15. If needed, use a pictorial representation.

$$\sigma \circ \delta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

Do the permutations δ and σ commute?

8 and o commute.

A permutation δ is called *opposite* to a permutation σ if $\delta \circ \sigma = e$. In other words, δ undoes what σ does. Such a permutation is denoted as σ^{-1} and is called the *permutation opposite to sigma* or *sigma inverse* (compare to x^{-1} on page 2).

Example 1 Find
$$\sigma^{-1}$$
 for $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.

The permutation σ reshuffles the figures

in the following order.

Hence,
$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Problem 17 Find σ^{-1} for $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$.

Steps to find o7:

1. connect same elements on the graph about

2. Represent this permutation by numbers/place holders

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$0 = 1$$

$$0 = 1$$

$$0 = 2$$

$$0 = 3$$

Note that since the permutation σ^{-1} undoes what the permutation σ does, σ works the same way for σ^{-1} . Hence, not only $\sigma^{-1} \circ \sigma = e$, but $\sigma \circ \sigma^{-1} = e$ as well. Thus, σ and σ^{-1} always commute.

$$\sigma^{-1} \circ \sigma = \sigma \circ \sigma^{-1} = e \tag{1}$$