COMPLEX NUMBERS: A PRIMER

MATH CIRCLE (HS1) 11/03/2013

When we first learn about square roots, we learned that we cannot take the square root of a negative number.

But what if we could? Suppose we define $\sqrt{-1} = i$. We call a number *imaginary* if it is a multiple of *i*.

We call the sum of a real number and an imaginary number a *complex number*. Therefore, complex numbers are of the form a + bi for $a, b \in \mathbb{R}$ (i.e. a, b are real numbers). If z = a + bi is a complex number, we call a the real part of z (denoted a = Re(z)), and we call b the imaginary part of z (denoted b = Im(z)).

Basic Arithmetic For Complex Numbers

We can add and subtract complex numbers by pretending *i* is a variable. For example,

$$(1+i) + (-3+4i) = -2 + 5i$$
 and $(3-3i) - (-2-5i) = 5 + 2i$.

We can multiply complex number by first pretending that i is a variable and then using the fact that $i^2 = -1$. For example,

 $(1+i)\cdot(-3+4i) = -3+i+4i^2 = -7+i \text{ and } (3-3i)\cdot(-2-5i) = -6-9i+15i^2 = -21-9i.$

1) Simplify each expression:

c) i(3+i)

- **d)** (1-i)(1+i)
- e) (2+3i)(3+2i)
- 2) Suppose x = a + bi and y = c + di.

a) Write a formula for x + y. b) Write a formula for $x \cdot y$.

Complex Conjugation

Let z = a + bi be a complex number. The *complex conjugate* of z (denoted \overline{z}) is defined by

$$\overline{z} = a - bi.$$

The *modulus* (or absolute value) of z (denoted |z|) is defined by

$$|z| = \sqrt{a^2 + b^2}.$$

Copyright ©2008-2013 Olga Radko/Los Angeles Math Circle/UCLA Department of Mathematics. Some problems adapted from previous Math Circle handouts.

For example, suppose x = 5i and y = 2 + 3i, then

$$\overline{x} = -5i, |x| = \sqrt{0^2 + 5^2} = 5$$
 and $\overline{y} = 2 - 3i, |y| = \sqrt{2^2 + 3^2} = \sqrt{13}$

3) Prove that $z \cdot \overline{z} = |z|^2$.

4) Suppose x = a + bi and y = c + di.

a) Prove that $\overline{x+y} = \overline{x} + \overline{y}$. b) Prove that $\overline{x \cdot y} = \overline{x} \cdot \overline{y}$.

The complex conjugate is useful in dividing complex numbers. For example,

1+i	=	(1+i)(2-i)	=	3+i	=	3	+	1
$\overline{2+i}$		$\overline{(2+i)(2-i)}$		$\overline{5}$		$\overline{5}$		$\overline{5}^{\iota}$

5) Simplify the following:

a) (1+i)(1+i)
b) |1+i|
c) |3-4i|
d) 25/(3+4i)
e) (1+i)/(1-i)

Challenge Problems

1) Come up with a nice formula for x/y where x, y is a complex number. Hint: Look at the case where x = 1 first!

2) Prove the following properties of modulus (where x, y, z are complex numbers):

a) $|\overline{z}| = |z|$.

b)
$$|xy| = |x| \cdot |y|$$
.

c)
$$|x/y| = |x|/|y|$$
.

3) a) Prove that if $ax^2 + bx + c = 0$ ($a, b, c \in \mathbb{R}$) has a root z, then \overline{z} is also a root.

b) Prove that if a polynomial with real coefficients (say $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$) has root z, then \overline{z} is also a root. Hint: Problem 4 will help.

c) Prove that every cubic polynomial has at least one real root.

4) Find all roots of the following polynomials:

a) $x^4 - 1$ b) $x^8 - 1$

For Further Investigation (Homework):

We can visualize complex number by thinking of the point (a, b) in the plane as the complex number z = a + bi.

Note that under this interpretation |z| is simply the distance from (a, b) to the origin.

1) Try to find out what each of the following does geometrically:

- a) Multiplication by *i*
- b) Dividing by *i*
- c) Multiplication by 1 + i