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In this packet, we will dive deeper in the theory of impartial games. We
will see that Nimber is not just a theory to determine who has a winning
strategy, but also a practical guide to execute the winning strategy.

Let us sort out some definitions and rules.

1 Review

We use the set notation G = {G1, G2, . . . , Gl} to mean that {G1, . . . , Gl}
is the set of all positions you can legally move to if you start the game G.
We say G1, . . . , Gl are immediate subgames of G. The 0 game is formally
defined as the empty set 0 = {}, meaning that there is no legal move for the
first player, and hence the first player loses.

1. Recall the nim game with a single pile of n tokens is denoted by ∗n.
Write ∗0 and ∗1 in the set notation. Then write ∗2. Hint. What are all
immediate subgames of ∗2? How do you write the positions themselves in
the set notation? You will encounter sets of sets of ... of sets.

Throughout this packet, the set of natural number includes 0:

N := {0, 1, 2, . . .}.
Recall that the Sprague–Grundy (SG) value or the nimber of a game
G = {G1, G2, . . . , Gl}, which we denote today by s(G), is defined as

s(G) := min(N \ {s(G1), . . . , s(Gl)}).
This operation that takes in a set of natural numbers and return the minimal
natural number not in the set is called the minimal exclusion, and is
denoted by

mex{n1, . . . , nl} := min(N \ {n1, . . . , nl}).
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2. Explain why the definition above implies that s(0) = 0.

3. Prove by induction that ∗n has SG value n.

Recall that a game is in N -position if the first player has a winning
strategy (from now on, we just say the first player wins), and P -position if
the second player wins. The sum of two games G1, G2 is the game where we
play G1, G2 side by side, and each player is allowed to take a move at exactly
one of the games; the player who has no move left loses. Two games G1, G2

are called equivalent if G1 +G2 is in P -position, and we say G1 ≈ G2.

4. Prove that a game G is in P -position if and only if G ≈ 0. Consequently,
two games G1, G2 are equivalent if and only if G1 +G2 ≈ 0.

We need to prepare for an induction technique. Recall that games we
consider are assumed to be well-founded, namely, there does not exist an
infinite sequence of play G = G0 → G1 → G2 → . . . such that Gi+1 is an
immediate subgame of Gi for all i (in other words, any given play of the game
is guaranteed to finish in a finite numer of turns).

5. (Weak induction) Suppose P is a true-false statement that can be asked
for all impartial games. Assume that whenever P is true for all immediate
subgames of G then P is true for G.1 Then P is true for all impartial games
G unconditionally. Hint. If P is false for some impartial game G, then it is
false for some immediate subgame G1, and you can keep going forever.

We will actually need a stronger version of the induction principle. We
say G′ is a proper subgame of G if there is a sequence of play G → G1 →
· · · → Gn with n ⩾ 1 such that G′ = Gn. A subgame of G is either G itself
or a proper subgame of G.

6. Explain why G cannot be a proper subgame of itself. Hint. Infinite chain.

7. (Strong induction) Fix an integer n ⩾ 1. Suppose P is a true-false state-
ment that can be asked for all n-tuples of impartial games (G1, . . . , Gn).
Given (G1, . . . , Gn), and assume that whenever P is true for all tuples (G′

1, . . . , G
′
n)

(excluding (G1, . . . , Gn) itself) such that G′
i is a subgame of Gi for all 1 ⩽ i ⩽

n, then P is true for (G1, . . . , Gn). Then P is true for all tuples (G1, . . . , Gn)
unconditionally.

1In particular, P is true for 0 because P is vacuously true for all immediate subgames
of 0, since 0 has no immediate subgame.
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Now we prove some fundamental properties of the SG value.

Problem 8. Prove that if two games have the same SG values, then they are
equivalent. Hint. Suppose s(G1) = s(G2) = n. Proceed by strong induction
on (G1, G2) (not on n). Show that no matter what the first player plays in
G1 +G2, the second player has a winning strategy.

9. Explain why any game with SG value n is equivalent to ∗n.
10. Prove that two equivalent games have the same SG values. Hint. You
can try to prove the contrapositive. You end up needing to prove that two
nim games ∗n and ∗m with m ̸= n are not equivalent by displaying a winning
strategy of the game ∗n+ ∗m for the first player.

11. Explain why any game equivalent to ∗n has SG value n.

2 Xor

Let xor, or exclusive or, be the operator on natural numbers defined by
“adding binaries without carrying”. We denote xor by ⊕. For example,

6⊕ 3 = (110)2 ⊕ (011)2 = (101)2 = 5.

12. Verify that a⊕ b = b⊕ a, (a⊕ b)⊕ c = a⊕ (b⊕ c). Verify that a⊕ b = 0
if and only if a = b.

Theorem 1. For two games G1, G2,

s(G1 +G2) = s(G1)⊕ s(G2).

We carefully prove this theorem by going through a winning strategy of
Nim.

13. Explain why Theorem 1 implies that in a multi-pile nim game ∗n1+ · · ·+
∗nl, the second player has a winning strategy if and only if n1⊕ . . .⊕nl = 0.

14. Explain why in order to prove Theorem 1, it suffices to show that the
second player wins in the game ∗a+ ∗b+ ∗(a⊕ b) for any a, b ∈ N.
15. Suppose a⊕ b⊕ c ̸= 0. Show that you may replace one of the numbers
(let’s say a), by a smaller natural number 0 ⩽ a′ < a, such that the resulting
triple has “total xor” equal to 0, namely, a′ ⊕ b⊕ c = 0.

Problem 16. Use induction to prove that the second player wins the game
∗a + ∗b + ∗(a ⊕ b), and give a winning strategy. This finishes the proof of
Theorem 1.
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3 Dawson’s chess

Consider a game, denoted by U(n) from now on, as follows. For each natural
number n, consider a 1× n chess board, so there is a row of empty squares.
Players take turn putting a piece on one of the empty squares that is not
adjacent to any existing piece. Whoever cannot move first loses. We denote
the SG value of U(n) by u(n).

17. Play the game U(n) with your neighbor with n = 0, 1, . . . , 7, 8. For each
n in the list, who do you think has the winning strategy? Do you have a
more general guess?

Problem 18. Write down a recursive algorithm in terms of mex and xor to
compute u(n). Then compute u(n) for n ⩽ 16. Does it confirm your guess of
the last question? Hint. After you play a move, it becomes the sum of two
smaller games.

The algorithm can quickly generate a large table of u(n), but as you have
noticed, there is no easy pattern. As it turns out, the SG values of U(n) are
eventually periodic with period 34. The table of u(n) is shown in Table 1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0+ 0 1 1 2 0 3 1 1 0 3 3 2 2 4 0 5 2
17+ 2 3 3 0 1 1 3 0 2 1 1 0 4 5 2 7 4
34+ 0 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5 5
51+ 2 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7 4
68+ 8 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5 5
85+ 9 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7 4
· · ·

Table 1: The values of u(n). The last two rows will repeat themselves indef-
initely, showing that u(n) is eventually periodic with period 34.

19. List all n ⩽ 100 such that the first player loses in U(n).

For all n not in your list, you know there is theoretically a winning strategy
for U(n) if you are the first player. However, can you practically win the U(n)
game, assuming you can freely consult Table 1 during the play?
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Problem 20. Describe a recipe to execute the winning strategy for U(n) (if
there is one) with the help of Table 1. Play the game with your neighbor
with n = 12 using the table-assisted winning strategy. If you want more
challenge, try n = 18. (Note that näıve analysis even for n = 10 already
seems impossible.)

The game U(n) is also calledDawson’s chess after a chess puzzle themed
game equivalent to it.

4 Octal games

We have seen that Sprague–Grundy value is a powerful tool to analyze im-
partial games, and it is robust to rule variations.

21. Consider the game Kayles, called K(n), where there is a row of n
bowling pins and at a player’s turn, they can knock down one pin or two
adjacent pins. The player who knocks down the last pin wins. Who has the
winning strategy? Is there a similar algorithm like the one before to compute
the SG value of K(n)?

We now define a framework that includes lots of games like this. The
interesting feature is that the games defined will always come in an infinite
sequence, just like U(n) and K(n).

An octal game is played on a heap of n tokens. At each move, the
player can remove certain number of tokens on one of the current heaps,
and (possibly) split that heap into two. The player who cannot move lose.
Whether a move is allowed will depend on the actual game. In an octal
game, the allowed moves are determined by the number of tokens removed.
For each i ⩾ 1, we use an octal digit di ∈ {0, 1, . . . , 7} to encode information
of whether we are allowed to remove i tokens from a heap as a move, and
how many heaps are allowed to be left. More precisely,

di = ai + 2bi + 4ci,

where

• ai = 1 if taking all i tokens (and thus leaving zero heap) is allowed and
zero otherwise,
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• bi = 1 if taking i tokens from a heap (leaving one heap) is allowed, and
zero otherwise,

• ci = 1 if taking i tokens from a heap and then dividing the remaining
into two heaps is allowed, and zero otherwise.

The octal number 0.d1d2 . . . is called the octal code. Note that a single
octal code defines a sequence G(n) of games for each n ⩾ 0.

For example, Nim is the octal game with code 0.333 . . . , becuase when
we are handed a pile of length i, we are allowed to remove all of it (leaving 0
pile), or remove part of it (leaving 1 pile). This rule translates to di = 3 for
all i.

22. Describe the rule of the game 0.07 = 0.07000 . . . and 0.77 with n tokens.
Is Kayles equivalent to one of these?

Problem 23. Find the octal game equivalent to the aforementioned U(n),
in terms of the octal code.

Any octal game defines a sequence of game G(n), which in turn gives a
nim sequence g(n) given by the SG value of G(n). Richard Guy conjectures
that for any finite octal game (i.e., one whose octal code has digits eventually
zero), the nim sequence g(n) is eventually periodic. This is a remarkable open
problem. There are examples that initially do not seem periodic, but it turns
out to be, e.g., the nim sequence of the octal game 0.106 is eventually periodic
with period 328226140474.

5 Multiplication of games

In the last package, you were introduced the rule for multiplying nimbers by
a “rectangular grid” game. (If you haven’t got to this part yet, don’t worry!
We won’t assume knowledge of it as prerequisite.) But a question persists:
why this particular game? Here we make it more natural by describing how
we multiply two games in general.

Given two games G1, G2, define the product game G1×G2 as follows. To
make a legal move as the first player of G1 × G2, you must simultaneously
declare a legal move in G1 and a legal move in G2. (If you cannot do so, you
lose!)

The definition of G1×G2 is not really finished, but you can already answer
the following question.
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24. Explain why G1 × 0 = 0×G2 = 0.

Now we shall describe the game state you leave to your opponent after
you make your initial move. To set up the notation to keep track, let’s say
G1 = {G′

1, . . .} and G2 = {G′
2, . . .}, so this means G′

1 is a possible game state
after you make a legal move in G1, among others. Let’s say in the game
G1 ×G2, as your first move, you declare to play the move G′

1 in G1, and the
move G′

2 in G2. We shall denote this move by a pair (G′
1, G

′
2).

25. How many possible first moves can you make in the game ∗2× ∗3? List
them all.

It remains to describe the game state that results from a move (G′
1, G

′
2)

in the game G1 ×G2. We define the resulting game state to be

G′
1 ×G2 +G1 ×G′

2 +G′
1 ×G′

2.

In summary, we define G1 ×G2 to be, in set notation,

G1 ×G2 = {(G′
1, G

′
2) : G

′
1 ∈ G1, G

′
2 ∈ G2},

and each (G′
1, G

′
2) is a game defined by

(G′
1, G

′
2) = G′

1 ×G2 +G1 ×G′
2 +G′

1 ×G′
2. (∗)

This definition is inductive because it assumes the products of subgames have
been defined.

26. Compute the SG value of ∗2× ∗2.

I haven’t really convinced you why (∗) is a natural definition. It would
be, if we can prove that

(a) (Commutativity) G1 ×G2 ≈ G2 ×G1.

(b) (Distributivity) (G1 +G2)×G3 ≈ G1 ×G3 +G2 ×G3.

(c) (Associativity) (G1 ×G2)×G3 ≈ G1 × (G2 ×G3),

and have a “natural” interpretation of both sides of each identity.

27. Explain why G1 ×G2 ≈ G2 ×G1 is true in one or two sentences.
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Now we work on distributivity. First let’s review the rule of the game
G1 +G2 in more depth.

28. In the game G1 +G2, suppose you make a move (i, G′
i), where i ∈ {1, 2}

and G′
i ∈ Gi. What is the resulting game state? Hint. It should be G′

i+G3−i.

29. Show that (G1 +G2)×G3 has the same set of first moves as G1 ×G3 +
G2 × G3. Hint. A good notation to denote the first move in either game
is by a triple (i, G′

i, G
′
3), where i ∈ {1, 2}, G′

i ∈ Gi, G
′
3 ∈ G3. Interpret the

meaning of this triple in the context of both games, carefully.

Problem 30. Prove the distributivity law. Hint. Write down the game state
after the move (i, G′

i, G
′
3) in (G1 + G2) × G3 as well as in G1 × G3 + G2 ×

G3. Show that they are equivalent. You may assume the distributivity law
holds for subgames by strong induction. You may assume i = 1 to ease the
notation. You will see the sum of six terms is equal the sum of four terms
after some cancellation.

Now we work on associativity.

31. Show that the (G1×G2)×G3 has the same set of first moves as G1×(G2×
G3). Hint. You actually only need to work on one side, say (G1×G2)×G3. If
you get a description of the set of moves of (G1×G2)×G3 that is “unaware”
of the parenthesis position in (G1 ×G2)×G3, then you are done.

Problem 32. In the game (G1 × G2) × G3, describe the game state after
the first move, assuming your first move is (G′

1, G
′
2, G

′
3) (the meaning of this

should be clear if you have answered the previous question). Use distribu-
tivity to simplify your result. Then prove the associativity law.

Associativity law implies that the notation G1 × · · · × Gl makes sense
without specifying the parentheses.

Problem 33. Give a natural direct definition of the game G1 × · · · × Gl.
Explain why being able to define G1 × · · · ×Gl directly gives a natural proof
of the associativity law.

6 Additional problems

Problem 34. Analyze the octal game 0.07, namely, compute a table of SG
values for n ⩽ 16 by first giving a recursive algorithm. (The game 0.07 is
called Dawson’s Kayles, and it is not the traditional Kayles.)
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It was observed by Dawson that the game 0.07 and U(n) are almost
equivalent, up to a shift. Find the correspondence rule by matching the
tables. Can you explain this coincidence? Even if not, do you have a strategy
to prove that the correspondence holds for general n?

Problem 35. Prove that

(a) For a game G, we have ∗1×G ≈ G.

(b) For a game G and a natural number n, we have

∗n×G ≈ G+G+ · · ·+G︸ ︷︷ ︸
n

.

(c) For games G1, G2, we have

(G1 +G2)
2 = G2

1 +G2
2.

(Here G2 means G×G.)

Problem 36. Show that if a, b > 0, then ∗a× ∗b ̸≈ 0.

Problem 37. Recall 22
n
:= 2(2

n). Prove by induction on N the following
statements:

(a) If m < n < N , then ∗22m × ∗22n ≈ ∗(22m22n).

(b) ∗22n × ∗22n ≈ ∗
(
3

2
· 22n

)
.

(c) The set {0, 1, . . . , 22N − 1} is closed under multiplication.

Conclude that {∗0, ∗1, . . . , ∗(22N − 1)} is a finite field with 22
N
elements,

namely, it is closed under addition, multiplication, and for any ∗a ̸= {∗1, . . . , ∗(22N−
1)} there is a unique ∗b ∈ {∗1, . . . , ∗(22N − 1)} such that ∗a × ∗b ≈ ∗1. We
denote ∗b by (∗a)−1.

Problem 38. How would you compute in general ∗a × ∗b? How about
(∗a)−1?

Problem 39. We define the Frobenius of a game G simply by

F (G) := G2.

For a positive integer n, define F n(G) = F (F n−1(G)) inductively, i.e., taking
the Frobenius n times. Show that for a natural number a, we have F n(∗a) ≈
∗a if and only if a ∈ {∗0, ∗1, . . . , ∗(22n − 1)}.
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