NIM

MATH CIRCLE (ADVANCED) 12/02/2012

Recall from last time the idea of dividing a game into \mathbf{P}-positions and \mathbf{N}-positions. A P-position is one that is winning for the previous player (that is, the one who just moved) while a N -position is one that is winning for the next player.
Therefore, if a game starts in a P-position, Player II wins, while if the game starts in a N-position, Player I wins.
The game of Nim: Suppose we have k piles of stones, with n_{1} stones in the first pile, n_{2} stones in the second pile, etc. Player I and Player II take turns removing any number (at least one!) stone from a single pile. The player who takes the last stone wins.
We will write the above game as $\left(n_{1}, n_{2}, \ldots, n_{k}\right)-$ Nim.
$0)$ a) List the P-positions and N-positions for Nim played with only one pile $(k=1)$.
b) For what values of n_{1} does Player I win?

1) a) Play Nim with piles of size 6 and 4 (i.e. $(6,4)-$ Nim). Who wins?
b) Explain the winning strategy.
2) a) Characterize the P-positions and N-positions for $\left(n_{1}, n_{2}\right)-\mathrm{Nim}$.
b) For what pairs $\left(n_{1}, n_{2}\right)$ does Player I win?

The Nim-sum (denoted by \oplus) of two numbers is computed as follows. Convert the numbers to binary, then add (in binary) WITHOUT carrying any digits, and finally convert back to decimal form. For example,

$$
60 \oplus 47 \rightarrow \begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 1
\end{array} \rightarrow 10011_{2}=19 .
$$

3) Compute the following Nim-sums:
a) $6 \oplus 4$
b) $12 \oplus 12$
c) $25 \oplus 8$
d) $3 \oplus 4 \oplus 5$
e) $19 \oplus 60 \oplus 47$
f) $2 \oplus 2 \oplus 2 \oplus 2$
g) $5 \oplus 2 \oplus 2 \oplus 2$
4) Write out P-positions and N-positions for $\left(n_{1}, n_{2}, n_{3}\right)-$ Nim for $n_{1}+n_{2}+n_{3} \leq 6$. Think of ways to minimize the number of positions you need to write out!
5) a) Prove that $a \oplus b=0$ if and only if $a=b$.
b) Restate 2) in terms of Nim-sums.
6) a) Characterize the P-positions and N -positions for $\left(n_{1}, n_{2}, n_{3}\right)$-Nim.
b) For what triples $\left(n_{1}, n_{2}, n_{3}\right)$ does Player I win?
7)* Prove 6)a).
8)* Characterize the P-positions and N-positions for $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$-Nim. Prove your answer!
$\infty)$ Solve the following games (i.e. try to characterize the P-positions and N-positions and try to prove your answer. However, this may not be possible!).
a) l-Subtraction Game: Similar to $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$-Nim, except players can remove at most l stones.
b) Greedy Nim: Similar to $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$-Nim, except players can only remove stones from the largest pile.
c) Multiple Pile Nim: Similar to $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$-Nim, except players can also remove the same number of stones from both piles.

Some problems are taken from:

- D. Fomin, S. Genkin, I. Itenberg "Mathematical Circles (Russian Experience)"

