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1 Introduction

You may already be familiar with arithmetic sequences (like 1, 4, 7, 10, . . . , where terms
have a common difference) and geometric sequences (like 2, 4, 8, 16, . . . , where terms have a
common ratio). Each of these can be defined using a recurrence, meaning one generates the
next term based on the previous one(s). For example, 1, 4, 7, 10, . . . is the sequence given
by a(0) = 1, a(n) = a(n − 1) + 3. Today, we will study more general classes of sequences
formed by recurrence relations, as well as a closely related tool called generating functions.

First, try the following warm-up problem.

Problem 1. How many ways can you tile a 2 × 10 rectangle with dominoes { , }?
To solve the problem, try the following:

1. First, manually count the number ways you can do this for 2 × 1, 2 × 2, 2 × 3,
2× 4, and 2× 5 rectangles.

2. Do you recognize this sequence? Make a conjecture and show why it’s true.
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3. Now answer the original question for a 2× 10 rectangle.

2 Linear recurrences with constant coefficients

Here is the primary object of our study today.

Definition 1. A sequence a(n) is a linear recurrence with constant coefficients if it
satisfies an equation of the form a(n) = c1a(n− 1) + . . . cka(n− k), where c1, . . . , ck ∈ C
(typically we will use N or R). To fully define such a sequence, we also need to pick
initial conditions a(0), . . . , a(k − 1).

For example, the Fibonacci sequence you saw in the previous problem, a(n) = a(n − 1) +
a(n − 2) with initial conditions a(0) = 1 and a(1) = 1, is a linear recurrence with constant
coefficients.

Problem 2. Write linear recurrences with constant coefficients for the following prob-
lems. Also compute as many initial conditions as you need to begin evaluating the
recurrence.

1. a(n) is the number of tilings of a 2× n rectangle by the tileset { , , }.

2. a(n) is the number of ways to pay for an item costing n dollars using $1 bills, $2
bills, and $5 bills, where the order in which the bills appear matters.
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Problem 3. Recurrences that look different can actually define the same sequence. Show
that the following recurrences actually define the Fibonacci sequence a(0) = a(1) = 1,
a(n) = a(n− 1) + a(n− 2).

1. a(n) = 1 +
∑n−2

i=0 a(i), with a(0) = a(1) = 1.

2. a(n+ 1) = 1
a(n−1)

((−1)n + a(n)2), with a(0) = a(1) = 1.

3 Generating functions

Now, consider the following question: How many paths are there from (0, 0) to (n, n), using
unit steps up and right only, and stay above (or touch) the line y = x? Such paths are called
Dyck paths, one for n = 5 is illustrated below.
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Problem 4. Let a(n) be the number of Dyck paths from (0, 0) to (n, n).

1. Compute a(1), a(2), and a(3).

2. Show that this satisfies the recurrence a(n+1) =
∑n

i=0 a(i)a(n−i). (Hint: consider
the dividing Dyck paths into two parts at the first point where the path returns
to the line y = x.)

The sequence a(n) above is also called the Catalan numbers and also count many other
problems. See the challenge problems for more.

Part 2 above gave a recurrence for the Catalan numbers, but it it is not a linear recurrence
with constant coefficients. We know that different recurrences can give rise to the same
sequence, so the question remains: can we find a linear recurrence with constant coefficients
for the Catalan numbers?

Spoilers: The answer is no, but how do you explain why? To do this, we will need to
introduce the idea of generating functions.

Definition 2. Given a sequence a(n), the (ordinary) generating function of a(n) is the
function (in x) given by

A(x) =
∞∑
n=0

a(n)xn.

(We will not worry about whether or not this infinite sum actually converges.)

Generating functions are an extremely frequently used tool in combinatorics. Some ad-
vanced Math Circle worksheets from previous years talk about generating functions before
recurrences!
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Problem 5. Write the generating function for a(n) = 1 (the constant sequence), and
then simplify away the big sum.

Problem 6. Show the following:

1. The generating function for a(n) + b(n) is A(x) +B(x).

2. The generating function for ca(n) is cA(x).

3. If a(0) = 0, the generating function for a(n− 1) is 1
x
A(x).
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Now, we will show you how to simplify the big sum for a more complicated sequence. Let’s
again take the Fibonacci numbers a(n) = a(n − 1) + a(n − 2) with a(0) = a(1) = 1 for
example. It would be nice if we could apply the previous problem, but a(0) ̸= 0. Instead,
we can do the following:

A(x) = a(0) + a(1)x+ a(2)x2 + a(3)x3 + . . .

= a(0) + a(1)x+ (a(1) + a(0))x2 + (a(2) + a(1))x3 + . . .

= a(0) + a(1)x+ (a(1)x2 + a(2)x3 + . . . ) + (a(0)x2 + a(1)x3 + . . . )

= a(0) + a(1)x+ x(A(x)− a(0)) + x2A(x)

= 1 + x+ xA(x)− x+ x2A(x)

= 1 + xA(x) + x2A(x)

Now, we can rearrange to solve for A(x) and get that

A(x) =
1

−x2 − x+ 1
.

Problem 7. For each of the recurrences you wrote in Problem 2, find and simplify the
generating function of the sequence.
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In general, we have the following. One direction of the proof is the same algorithm that you
have been doing.

Theorem 3. A sequence satisfies a linear recurrence with constant coefficients if and
only if its generating function is of the form p(x)

q(x)
, where p and q are polynomials (such a

function is called rational).

Problem 8. Let a(n) be the Catalan numbers.

1. Using Problem 4.2, show that the generating function of the Catalan numbers
satisfies A(x)2 = A(x)−1

x
.

2. Using the previous theorem, conclude that a(n) does not satisfy any linear recur-
rence with constant coefficients.
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4 Extra problems

Problem 9. Show that the Catalan numbers also count:

1. The number of proper expressions using n pairs of parentheses. (For example, ())(
is improper while (()) is proper.)

2. The number of full binary trees with n + 1 leaves. (In a full binary tree, every
internal vertex has two children: a left child and a right child. Ask your instructor
if you need more clarification on the definition.)

3. The number of ways you can draw n non-intersecting lines between 2n points
arranged in a circle.
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Problem 10. One reason that linear recurrences with constant coefficients are useful is
because we can always get rid of the recursion entirely, and write the nth term of the
sequence purely in terms of n. In this problem, you will see how to do this for Fibonacci
numbers a(n).

1. We will first look for solutions to the recurrence, without worry about the initial
conditions. If one guesses that a(n) = rn is a solution to a(n) = a(n−1)+a(n−2),
what must r be?

2. Let r1 and r2 be the two values from part 1. Show that for any two numbers c1, c2,
a(n) = c1r

n
1 + c2r

n
2 also fits the recurrence.

3. Using the initial conditions a(0) = a(1) = 1, create and solve a system of equations
to find c1 and c2.

4. Conclude your final formula for the Fibonacci numbers.

This technique is general and works for all linear recurrences with constant coefficients.
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Problem 11. Fix any set of tiles T (each made of one or more 1 × 1 squares) and a
number k. Show that the number of tilings of an k × n rectangle is always satisfies a
linear recurrence with constant coefficients.

Problem 12. Prove the direction of Theorem 3 that we have not yet covered. That
is, show that if a sequence has a rational generating function, then it satisfies a linear
recurrence with constant coefficients.
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