Continued Fractions

1 Finite Continued Fractions

Definition 1. A finite continued fraction is an expression of the form

$$a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{3} + \frac{1}{\dots + \frac{1}{a_{n-1} + \frac{1}{a_{n}}}}}}$$

where we will assume always that a_1, \ldots, a_n are positive integers. We often use the more compact notation $[a_0, a_1, \ldots, a_n]$.

To compute the continued fraction expansion of a number, for example $\frac{11}{3}$, we use the following recursive procedure:

- Write $\frac{11}{3} = 3 + \frac{2}{3}$, separating out the largest whole number possible.
- Rewrite this as $3 + \frac{1}{\frac{3}{2}}$, expressing the non-whole number part $\frac{2}{3}$ as 1 over its reciprocal.
- Repeat the procedure on the denominator $\frac{3}{2}$.

If there is nothing left over after we take away the largest whole number, the procedure terminates. Here is the procedure carried out on $\frac{11}{3}$:

$$\frac{11}{3} = 3 + \frac{2}{3}$$
$$= 3 + \frac{1}{\frac{3}{2}}$$
$$= 3 + \frac{1}{1 + \frac{1}{2}}$$

Problem 1.1. Compute a continued fraction expansion for each of the following numbers:

1. $\frac{5}{12}$ 2. $\frac{5}{3}$ 3. $\frac{33}{23}$ 4. $\frac{37}{31}$

Problem 1.2. For each continued fraction, write the corresponding number as a reduced fraction:

1. [2, 3, 2]

2. [1, 4, 6, 4]

3. [2, 3, 2, 3]

4. [9, 12, 21, 2]

2 Infinite Continued Fractions

The procedure outlined in the previous section may be carried out for any number x: At each step we subtract the largest whole number that we can, keeping the result non-negative. Then we invert the remainder and repeat. For example, if $x = \sqrt{2} \approx 1.414...$, we have:

$$\sqrt{2} = 1 + \frac{1}{1 + \sqrt{2}}$$

= $1 + \frac{1}{1 + \left(1 + \frac{1}{1 + \sqrt{2}}\right)}$
= $1 + \frac{1}{2 + \frac{1}{1 + \sqrt{2}}}$
= \cdots

Problem 2.1. Find continued fraction expansions for the square root of each natural number:

1. $\sqrt{3}$

2. $\sqrt{4}$ 3. $\sqrt{5}$ 4. $\sqrt{6}$ 5. ...

3 Continued Fractions, Continued

Definition 2. Given a continued fraction

$$[a_0, a_1, a_2, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

, the numbers a_j are called the **partial quotients** of the expansion. The fraction $\frac{p_k}{q_k} = [a_0, a_1, \ldots, a_k]$ is called the **kth convergent**.

Problem 3.1. Notice that in all the cases we have observed so far, the continued fraction expansion of a rational number has terminated.

- 1. Compute the continued fraction expansion for $\frac{195}{154}$ using the worksheet provided. Do you see a pattern in the remainders r_j ?
- 2. In general, what is the relationship between a fraction $\frac{a}{b}$ and the first remainder? The first remainder and the second?
- 3. Prove that the continued fraction expansion of any rational number terminates.

Definition 3. A quadratic irrational is an irrational number which is the root of a quadratic equation $ax^2 + bx + c = 0$.

Problem 3.2. The "golden ratio", $\phi = \frac{1+\sqrt{5}}{2}$, satisfies $\phi^2 = \phi + 1$, hence $\phi = 1 + \frac{1}{\phi}$. What happens when you repeatedly plug the right hand equation into itself?

Problem 3.3. The number $1 + \sqrt{2}$ is sometimes jokingly called the "silver ratio". Can you guess why?

Problem 3.4. We say that a continued fraction expansion is **eventually periodic** if the partial quotients a_j eventually fall into a repeating cycle. We use the notation $[a_0, a_1, \ldots, a_k, \overline{a_k + 1, \ldots, a_n}]$, e.g. $[1, \overline{2, 3}] = [1, 2, 3, 2, 3, 2, 3, 2, 3, \ldots]$. Find the number associated with each following continued fraction expansion:

1. $[3, \overline{3, 6}]$

2. $[3, \overline{1, 2}]$

3. $[0, 3, \overline{2}]$

4. $[0, 1, \overline{10, 5}]$

Problem 3.5. Prove that for any eventually periodic continued fraction expansion, there is a quadratic irrational with that expansion.

Problem 3.6. Many people know the decimal expansion of π to several places. However, the continued fraction expansion is much less familiar!

- 1. Use a calculator to find the first few (at least three) terms of the continued fraction expansion for π . What happens if you truncate the expansion after two terms? three terms?
- 2. Compare: If you know the first three terms of the continued fraction expansion, how many decimal places of accuracy does this give?

Problem 3.7. Given two fractions $\frac{a}{b}$, $\frac{c}{d}$, the fraction $\frac{a+c}{b+d}$ is called their **mediant**. What happens if you begin with the fraction $\frac{p_{k-2}}{q_{k-2}}$, and repeatedly take mediants with $\frac{p_{k-1}}{q_{k-1}}$? Try this out with some of the expansions you've computed.

Problem 3.8. Prove that the convergents satisfy the recurrence relations

$$p_k = a_k p_{k-1} + p_{k-2}$$
$$q_k = a_k q_{k-1} + q_{k-2}$$

(*Hint: Assume the relation holds for any continued fraction up to the kth level.*)

Problem 3.9. Use the previous exercise to prove the identity

$$p_k q_{k-1} - p_{k-1} q_k = (-1)^k$$

What does this tell you about $\frac{p_k}{q_k} - \frac{p_{k-1}}{q_{k-1}}$?

j	$x_j = a_j + r_j$	a_j	$x_{j+1=rac{1}{r_j}}$
0			
1			
2			
3			
4			
5			
6			
7			
8			
j	$x_j = a_j + \ r_j$	a_j	$x_{j+1=rac{1}{r_j}}$
0			
1			
2			
3			
4			
5			
6			
7			
8			
j	$x_j = a_j + \ r_j$	a_j	$x_{j+1=rac{1}{r_j}}$
0			
1			
2			
3			
4			
5			
6			
7			
8			
-			

j	$x_j = a_j + r_j$	a_{j}	$x_{j+1=rac{1}{r_j}}$
0			
1			
2			
3			
4			
5			
6			
7			
8			
j	$x_j = a_j + r_j$	a_j	$x_{j+1=rac{1}{r_j}}$
0			
1			

 $\mathbf{2}$

3

 $\mathbf{4}$

 $\mathbf{5}$

6

 $\mathbf{7}$

8			
j	$x_j = a_j + \; r_j$	a_j	$x_{j+1=rac{1}{r_j}}$
0			
1			
2			
3			
4			
5			
6			
7			
8			

p_{j}	q_{j}	dec									

p_{j}	q_{j}	dec	p_j	q_j	dec	p_{j}	q_j	dec	p_{j}	q_j	dec