OLGA RADKO MATH CIRCLE, SPRING 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet 4:

Let \mathbb{F} be a field of characteristic different to 2 or 3 .
Let $x^{3}+a x+b$ be a cubic polynomial with coefficients in \mathbb{F} that has no repeated roots. An elliptic curve over \mathbb{F} is defined as the set of points (x, y) in \mathbb{F}^{2} satisfying the equation

$$
y^{2}=x^{3}+a x+b
$$

together with a single point denoted O and called the point at infinity.

Problem 4.1:

(1) How many points does the elliptic curve given by the equation $y^{2}=x^{3}-x$ over \mathbb{F}_{5} have?
(2) How many points does the elliptic curve given by the equation $y^{2}=x^{3}+x$ over \mathbb{F}_{5} have?
(3) Show that no elliptic curve over \mathbb{F}_{5} can have more than 11 points.

Solution 4.1:

For the following problem our field will be the real numbers, thus we can draw the curves.
Let E be an elliptic curve, let P and Q be two points in E. We will define $P+Q$ and $-P$ by the following rules.
(1) If $P=O$, then $-P:=O$ and $P+Q:=Q$, so in the following cases we will assume that no point is the point at infinity.
(2) If the point P has coordinates (x, y), then the point $-P$ is given by the the coordinates $(x,-y)$
(3) If P and Q have different x-coordinates, then the line $l=\overline{P Q}$ intersects E at a third point R (in case l is tangent to E at P or Q, we define R to be the point of tangency). We define $P+Q=-R$.
(4) If $Q=-P$, then $P+Q:=O$.
(5) If $P=Q$, then let l be the tangent line to E at P, let R be the third point of intersection of l and E. We define $P+Q:=-R$.
These definitions also work in the case of any field, if one takes care of what a tangent curve means in those cases. An example of this can be seen in the following picture:

Problem 4.2:

For the following problem our field will be the real numbers, thus we can draw the curves.
Let L be some line that is not paralel to the y-axis, show the following equalities:
(1) Assume $L \cap E$ are three different points A, B, C. Then

$$
A+B+C=O
$$

(2) Assume $L \cap E$ consists of two points A, B, where L is tangent to E at A. Then $A+A+B=O$.
(3) Assumme $L \cap E=\{A\}$. Then $A+A+A=O$.

Solution 4.2:

The objective of the next problem is to find a formula for the point $P+Q$, in terms of a, b and the coordinates of P and Q.

Let E be the elliptic curve over \mathbb{R} given by the equation $y^{2}=x^{3}+a x+b$, and $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$. Assume that $x_{1} \neq x_{2}$.

Let $y=\alpha x+\beta$ be the equation of the line l passing through P and Q.
Let $R=\left(x_{3}, y_{3}\right)$ be the third point of intersection of l and E.
Problem 4.3:
(1) Show that the x-coordinate of the intersection points of l and E satisfy the equation:

$$
x^{3}-(\alpha x+\beta)^{2}+a x+b=0
$$

(2) Show that $x_{3}=\alpha^{2}-x_{1}-x_{2}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}$.
(3) Compute the coordinates of $P+Q$.

This can be taken as the definition of $P+Q$, when $P \neq Q$, in any field.

Solution 4.3:

Let E be the elliptic curve over \mathbb{R} given by the equation $y^{2}=x^{3}+a x+b$, and $P=\left(x_{1}, y_{1}\right)$. Let $y=\alpha x+\beta$ be the equation of the line l tangent to E passing through the point P.

The tangent line to E at P has slope $\alpha=\frac{3 x_{1}^{2}+a}{2 y_{1}}$.

Problem 4.4:

(1) Show that the x coordinates of the intersection points of l and E satisfy the equation:

$$
x^{3}-(\alpha x+\beta)^{2}+a x+b=0
$$

(2) Show that $x_{3}=\alpha^{2}-2 x_{1}=\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)^{2}-2 x_{1}$.
(3) Compute the coordinates of $P+P$.

This formula can be taken as the definition of $P+P$ for an elliptic curve over any field.

Solution 4.4:

One can think of the elliptic curve given by equation $y^{2}=x^{3}+a x+b$ with the point at infinity O, as a projective curve in $\mathbb{P}_{\mathbb{F}}^{2}$, with equation
$y^{2} z=x^{3}+a x z^{2}+b z^{3}$
Problem 4.5
Show that there exists a bijection between the points of the elliptic curve E (O and points (x, y) in $\left.y^{2}=x^{3}+a x+b\right)$ and points in the projective plane satisfying the equation $y^{2} z=x^{3}+a x z^{2}+b z^{3}$.

What point in the projective plane corresponds to O ?

Solution 4.5

Problem 4.6:

Show that $P+Q+R=O$ if and only if P, Q, R are the intersection points of a line and E, when we think of it as a projective curve.

Which cases are we missing if we only consider lines in affine space?
Solution 4.6:

Let L_{1}, \ldots, L_{6} be homogeneous linear polynomials in three variables,i.e. $L_{i}=0$ is a projective line in \mathbb{P}^{2}. Let $X=L_{1} L_{2} L_{3}$ and $Y=L_{4} L_{5} L_{6}$. Assume that $\{X=0\} \cap\{Y=0\}$ are nine different points.

For the following problem, you may use that if a elliptic curve (seen as a projective curve) passes through 8 of the points in $\{X=0\} \cap\{Y=0\}$ then the intersection of the degree 3 curve and $\{X=0\} \cap\{Y=0\}$ is exactly the 9 points of $\{X=0\} \cap\{Y=0\}$.

Problem 4.7:

Assuming that the points $P, Q,-(P+Q), O, R,-R,-P,-(Q+R),(P+Q)+R$ are all different, show that $(P+Q)+R=P+(Q+R)$.

Hint: Find 6 lines $L_{1}, \ldots, L_{6}, X=L_{1} L_{2} L_{3}$ and $Y=L_{4} L_{5} L_{6}$ such that $X \cap Y=\{P, Q,-(P+Q), O, R,-R,-P,-(Q+$ $R),(P+Q)+R\}$.

Solution 4.7:

Problem 4.8:

Show that the points of an elliptic curve with the addition defined before form an abelian group i.e. show that the operation satisfies associativity, commutativity, there exists a neutral element and any element has an inverse.
Solution 4.8:

An element P of a group $\left(E,+_{E}\right)$ is said to have order d if d is the smallest positive integer such that

$$
d P=\underbrace{P+{ }_{E} \cdots+_{E} P}_{d \text { times }}=0
$$

Problem 4.9:
Find the order of the point $(2,3)$ on the elliptic curve $y^{2}=x^{3}+1$.
Solution 4.9:

Problem 4.10:

Let P be a point in an elliptic curve E, different from the point at infinity.
(1) Show that a point has order 2 if and only if it is on the x-axis
(2) Show that a point P has order 3 if and only if the tangent to E at P does not contain any other point of E.
(3) Can you find a geometric description of the points of order 4 in E ?

Solution 4.10:

Problem 4.11:

Let p be an odd prime number, different from 3. Show that there are $p+1$ different points in the following elliptic curves over \mathbb{F}_{p}
(1) $y^{2}=x^{3}-x$, for $p \equiv 3(\bmod 4)$.
(2) $y^{2}=x^{3}-1$, for $p \equiv 2(\bmod 3)$.

Solution 4.11:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

