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Finite fields play a crucial role in the realm of cryptography. Through this worksheet,
we aim to understand and explore some of the qualities that make finite fields useful in
cryptography as well as to gain some intuition on how to work with them. The finite
nature of these constructs along with many properties, some of which are often shared
with the real numbers R, make them the perfect tool for solving problems algorithmically
with the use of computers. A great example of a shared and crucial property between
finite fields and the real numbers is the fundamental theorem of algebra. Before we delve
into that however, we should ask:

1 What is a Field?

Let S be some set (e.g. the letters of the English alphabet or the real numbers R.) where
+ and · are well defined as functions. Their input is any pair of ”numbers” in S: (a, b)
and their output a single ”number”: a+ b and a · b respectively.
In R, for example, under addition the pair (5,3) goes to 3+5, which we know to be 8.
In order to call such a construction a Field it will have to satisfy the following axioms:

Axiom 1.1.
Closure of operations:
For a, b ∈ S then a+ b and a · b ∈ S. In other words, adding or multiplying elements in
S gives you elements in S.

Axiom 1.2.
Associativity of operations:
For any two elements a and b in S:

• Addition: (a+ b) + c = a+ (b+ c)

• Multiplication: (a · b) · c = a · (b · c)

i.e. we can ignore parentheses in addition and multiplication.

Axiom 1.3.
Commutativity of operations:
For any two elements a and b in S:

• Addition: a+ b = b+ a

• Multiplication: a · b = b · a

i.e. order doesn’t matter in addition and multiplication.
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Axiom 1.4.
Identity of addition:
There exists an element a ∈ S that has the property: a + x = x for all x ∈ S. In the
business this symbol goes by the nickname of ”zero”. From now on we will use the symbol
0 to denote it.

Axiom 1.5.
Identity of multiplication:
There exists an element a ∈ S that has the property: a · x = x for all x ∈ S. In the
business this symbol goes by the nickname of ”one”. From now on we will use the symbol
1 to denote it.

Axiom 1.6.
Inverse of addition:
For every element a in S we can find some element b in S such that a + b = 0, i.e. they
sum to the additive identity. Such an element b can be represented as −a.

Axiom 1.7.
Inverse of multiplication:
For every element a in S we can find some element b in S such that a · b = 1, i.e. they
multiply to the multiplicative identity. Such an element b can be represented as a−1.

Axiom 1.8.
Distributivity:
For any a, b, c ∈ S we have: a · (b+ c) = a · b+ a · c. This describes the mechanism of how
addition and multiplication interact.

Problem 1.1.
Which of the following sets along with the usual addition and multiplication define a
field? If they don’t, which axioms do they break?

1. Integers Z.

2. Rational numbers Q.

3. Real numbers in the interval from 0 to 1?

Could S be finite?
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2 Recalling Modular Arithmetic

Theorem 1.
The Division Algorithm:
Given two integers n and m. I can always write: n = m · q + r with q and r integers and
0 ≤ r < m.

When we write 8 (mod 5) ≡ 3 (mod 5) we mean that 8 and 3 have the same remainder
r when we divide by 5. Generally, x (mod n) = the remainder from the integer division
of x by n.

2.1 Warm-up

Problem 2.1.
Calculate the following:

• 37 (mod 5) =

• 12 (mod 7) =

• 7! (mod 7) =

• 5! (mod 10) =

Problem 2.2.
For some n ∈ Z what are the possible values of n (mod 12)?

Think of the operation a (mod N) as placing the integer a in one of N categories de-
pending on the remainder it has when we divide it by N.

2.2 Construction

Consider the set S = {0, 1, 2, 3, · · · , N − 1}, with addition and multiplication defined as
follows:
For a, b in S:

• a+o b = a+ b (mod N)

• a ·o b = a · b (mod N)

In other words, in order to add or multiply two numbers in S we add or multiply
normally and consider the result (mod N). This way the result of addition and multi-
plications of elements in S will be contained in S.
We denote this construction as ZN . For the rest of the worksheet we will use the
normal + and · symbols to refer to +o and ·o

Problem 2.3.
Find the possible values of x in Z12 in each equation with +, and · defined as above.

• x+ 8 = 2

• x+ 3 = 0

• 6 · x = 0
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• 3 · x = 2

• 7 · x = 1 i.e. what is 7−1 in Z12 ?

• x2 = 4

Problem 2.4.
Is Z12 a field? If not, which axioms does it break?

Recall last time we showed that for integers a, b if gcd(a, b) = 1 then we can find
integers u and v with au+ bv = 1 and vice versa.

Problem 2.5.
Use the statement above to show that for a in Zn, a has a multiplicative inverse if and
only if gcd(n, a) = 1.

Problem 2.6.
In Z5 find the multiplicative inverse of every non-zero element.

• 1−1 =

• 2−1 =

• 3−1 =

• 4−1 =

Problem 2.7.
In a field every a ”number” (element of the field) has to have a multiplicative inverse.
What does n have to be in order for Zn to be a field?

We found a finite field!
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3 Playing with Zp

For the rest of the problems with p we will denote some prime number.

Problem 3.1.
Show that in Zp if a · b = 0 then a = 0 or b = 0.

Problem 3.2.
Use the result above to prove that in Zp for a ̸= 0 if a · b = a · c then b = c. (This gives
us the ability to cancel on both sides of equations in the field.)

Problem 3.3.
For some element a in Zp, consider the function fa(x) defined on the elements of Zp with
fa(x) = x · a. Show that fa(x) is one-to-one. (i.e. if fa(x) = fa(y) then x = y in Zp)

Problem 3.4.
With fa defined above, is it possible for fa(x) = x?

Problem 3.5.
Start with 1 and consider the sequence emerging by iteratively applying fa. So, q0 = 1,
q1 = fa(q0) = a, q2 = fa(q1) = a2, · · · . What is the maximum number of distinct
elements this sequence can have? If we continue in this manner will we get repetitions in
the sequence?

Problem 3.6.
Construct such sequence in Z7 for f3(x) = 3 · x.
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Problem 3.7.
Suppose we follow the same process above until we get a repeat (we don’t include the
repeat in the sequence). Our sequence will look like S1 = {1, a, a2, · · · , an} all of which
are distinct in Zp.Prove that if an+1 is in S1 then an+1 = 1.

Problem 3.8.
What is the maximum value of such n?

So, we know that by repeating this process, for some positive number n, we’ll get an+1 = 1.
Let’s find the n that gives us this result.

Suppose n is less than p − 1, which means that my sequence S doesn’t include
all of the elements in Zp. We can then choose some b /∈ S and iteratively apply the
function fa(x) again until you get a repeat . From this we’ll get another sequence S2 =
{b, ba, ba2, · · · , bam}.

Problem 3.9.
Show that S2 also has exactly n elements.

Problem 3.10.
Show that S2 can’t have any elements in common with S1.

We now have two disjoint sets S1 and S2. Suppose we proceed to select an element c in
Zp that is in neither of the previously constructed sets, and with it we create yet another
sequence S3 = {c, ca, ca2, · · · , can} which will be similarly disjoint from S1 and S2 and
will have n elements.
One could continue this process to create sets S1, · · · , SM , until there are no more elements
in Zp to choose from. i.e. S1 ∪ S2 ∪ · · · ∪ SM = Zp.

Problem 3.11.
Using the set equation above reach a contradiction and deduce that n has to be p− 1.

What we have shown is that for every element a in Zp, a
p−1 = 1. Also known as

Fermat’s Little Theorem.
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4 Polynomials over Zp

Problem 4.1.
Solve the equation x2 − y2 = 39 where x, y are integers.

Polynomials:

• Polynomials are expressions/functions of the form p(x) = a0 + a1 · x+ · · ·+ an · xn.

• The degree of a polynomial: deg(p(x)), is the largest power of n that appears as an
exponent of x in the polynomial.

• A root of a polynomial is a ”number” xr such that p(xr) = 0

Usually, we think of the coefficients ai of these polynomials to be real numbers, and
the polynomial itself a function from real numbers to real numbers. It turns out that if
we restrict the coefficients to be elements of some finite field like Zp, we can then think
of our polynomial as a function from elements of Zp to other elements of Zp.

In fact polynomials retain many of their nice properties this way.

The fundamental theorem of algebra states that a degree n (n > 0) polynomial in the
real numbers has at most n roots. We will investigate if this is true for polynomial
over Zp.

Problem 4.2.
For p(x), q(x) polynomials in Zp. What is deg(p(x) · q(x))?

Problem 4.3.
For polynomials with coefficients in Z4 (not a field) find two non-zero polynomials p(x), q(x)
with p(x) · q(x) = 0

Problem 4.4.
How many roots does f(x) = x2 + 1 have in the real numbers. What about Z5?

Problem 4.5.
How many roots does f(x) = xp − x have in Zp?
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Problem 4.6.
Let p(x) = a1 ·x+b1 be a degree 1 polynomial in Zp. Suppose I give you another non-zero
polynomial g(x) = c0 + c1x + · · · + cmx

m. Prove that you can always find polynomials
q(x) and r(x) with p(x) = g(x) · q(x) + r(x) and deg(r(x)) < deg(g(x)).

Problem 4.7.
Let p(x) = a0 + a1x + · · · + anx

n in Zp. Also let g(x) = b0 + b1x + · · · + bnx
n in Zp.

With n < m. Prove that you can always find polynomials q(x) and r(x) such that
p(x) = g(x) · q(x) + r(x) with deg(r(x))< n

Problem 4.8.
Use the above two problems to prove the following by induction:
For any two polynomials p(x) and g(x) in Zp I can find q(x) and r(x) with p(x) =
g(x) · q(x) + r(x) and deg(r(x)) < deg(g(x)).

Problem 4.9.
Show that in Zp if f(a) = 0 then f(x) = (x− a) · q(x) for some q(x).

Problem 4.10.
According to the result above if the polynomial f(x) in Zp has 3 roots what is the
minimum degree of f(x).

The fundamental theorem of algebra remains true over the finite fields Zp as well!
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