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FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet 3: Public key crpytography

“Cryptography is the study of methods of sending messages in disguised form so that only the intended recipients
can remove the disguise and read the message. The message we want to send is called the plaintext and the disguised
message is called the ciphertext.”

An enciphering transformation is a function that takes any plaintext message and gives a ciphertext message. In
other word it is a function f : P → C, where P and C are the sets of all possible plaintexts and ciphertexts, respectively.
We will usually require that f is one-to-one and onto, i.e. for any ciphertext there is exactly one plaintext that gets
encrypted into it. The deciphering transformation is f−1, the inverse of the enciphering transformation.

Today we will mostly working with encryptions that go from Z/nZ to itself.
Such a function can be for example of the form f(x) = ax+ b, for fixed numbers a, b, with a invertible in the ring

Z/nZ . If we know the value of n and that the encryption is by an affine function f(x) = ax+ b, then we only need
to determine the values of a, b to determine how to decipher the ciphertexts.
Problem 3.1:

Compute the inverse functions for the following functions. You must give the answer in the form g(x) = cx + d,
where c and d are integers.

(1) f(x) = 3x+ 5 in Z/7Z
(2) f(x) = 7x+−4 in Z/10Z
(3) f(x) = 4x+ 5 in Z/15Z

Solution 3.1:
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A public key cryptographic system is one that uses a pair of related keys, a public key and a private key. Anyone
with a public key can encrypt a message, but only those that posses the private key can decrypt the ciphertext.
The security of such a system relies on keeping the private key secret and the mathematical difficulty of finding the
inverse to the enciphering transformation. As such, what can be thought of a public key cryptography relies on what
is the state of art of algorithms to solve certain problems and the computational power that one has available.

In traditional cryptography (e.g. Caesar cipher) both the encryption and decryption have to be kept private, in
order for no one else to be able to intercept messages.

sometimes we will write the key of the cryptosystem as K = (f, g), where f and g are the enciphering and
deciphering functions. Othertimes we will write the key as f = (a, b), where (a, b) are parameters that define the
encrypting function (which is of public knowledge).
Problem 3.2:

Suppose that m people want to communicate with each other. Each user wants to communicate with each other
in such a way that the remaining m− 2 people cannot eavesdrop.

(1) How many different keys (cryptosystems) are needed to ensure this, if they are using classical cryptosystems?
(2) How many different keys are needed to ensure this, if they are using public key cryptosystems?

Solution 3.2:
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The objective of this problem is to create a long distance coin flip. This could be used, for example if two countries
are organizing a soccer match and they want to decide who will hosted the competition, without having to meet in
person to flip a coin.

Let our encryption key be a two to one function f : P → C, meaning that any element c in the image of f has
exactly two distinct preimages p1 and p2, with f(p1) = f(p2) = c. And the decryption key g gives both of the
preimages for a ciphertext.

Notice that if one has an element p1, one can find the companion element p2 if we know both f and g. But we will
assume that only knowing the encryption function f , it is impossible to compute the companion element p2 (because
finding g is computationally too hard).
Problem 3.3:

Suppose that two people (Alice and Bob), want to use this setup (f and g) to flip a coin. Alice generates the
functions f and g and sends f (but not g) to Bob.

Explain a process in which each player has a 50% chance of winning, and they can prevent the other person from
cheating.
Solution 3.3:
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Often one of the most important parts of a message is the signature, this ensures that the message was sent by a
specific person and no one else.

Suppose there are two people A (Alice) and B (Bob), each having their public key cryptosystem KA = (fA, gA),
KB = (fB , gB). Anyone can send a message to Bob, by simply encrypting using fB .
Problem 3.4:

Find a way in which Alice can encrypt a message to Bob, ensuring that only Bob can decipher it, and no one
other than Alice could have encrypted it.

Hint: If one switches plaintext and ciphertext, only Alice can encipher using gA, while anyone can decipher using
fA.
Solution 3.4:
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The objective of the following few problems is to describe the RSA cryptosystem.
First the user chooses two large prime numbers p q, and sets n = pq. These primes will need to be large, both for

the implementation of the cryptosystme in problem 3.8 and for the deciphering functions to be hard to compute by
knowing the enciphering function.

Let ϕ(n) denote the number of positive integer numbers coprime with n
Problem 3.5:

Show that ϕ(n) = n+ 1− p− q = (p− 1)(q − 1).
Solution 3.5:
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Problem 3.6:
Show that X(p−1)(q−1) ≡ 1 (mod pq)

Solution 3.6:
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Next, the user chooses randomly an integer number e less than ϕ(n) that is coprime with ϕ(n). They find the
inverse of e modulo ϕ(n), i.e. a positive integer d, such that ed ∼= 1 (mod ϕ(n)).

From now on we will call the user Alice, we have fixed pA, qA, nA = pAqA, ϕ(nA) = (pA − 1)(qA − 1), eA, dA.
The public enciphering key will be given by the entries (nA, eA), where the function will be f(X) ≡ XeA (mod nA).
The difficulty of finding the deciphering key of RSA relies on the difficulty to find the factorization of n = pq.

Problem 3.7:
Show that the deciphering key will be given by the entries (nA, dA), where the deciphering function will be

g(Y ) ≡ Y dA (mod nA)
Solution 3.7:



8 F. FIGUEROA AND J. MORAGA

In the previous algorithm the possible plaintext and ciphertexts depend on the choice of prime numbers, namely
P = C consists of nA = pAqA many elements.

The way we usually implement this ciphertext is to impose Nk ≤ nA ≤ N l, where N is the number of letters in
an alphabet. Thus any string of text consisting of k-letters can be sent to a number smaller than nA, enciphered by
RSA and gives a unique block of text of at most l letters.

Here strings of letter as seen as numbers, via using base N .
For the following problem you may use a calculator.

Problem 3.8:
Let N = 26, k = 3, l = 4, meaning that we will send strings of two letters to strings of at most 3 letters, using an

alphabet of 26 letters.

(1) Using cipher the key (n, e) = (46927, 3) encipher the message YES.
(2) Using the fact that 46927 = 281 ∗ 167, find a deciphering key, and corroborate that the answer from the

previous item gives you back the plaintext YES.

Solution 3.8:
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Different choices of p q work better than others, in terms of how hard it is to break the code, i.e. find an enciphering
key to RSA.

Let p, q be prime numbers, with m := lcm(p− 1, q − 1)
Problem 3.9:

(1) Show that xm ≡ 1 (mod pq), for any x coprime with pq.
(2) Use the previous item to exaplain why it is important in RSA to pick primes such that the least common

multiples of p− 1 and q − 1 is large.

Solution 3.9:
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The logarithm problem in Fq corresponds to, for given given x, b find an element y in Fq, such that yb = x. This
is generally computationally hard, and the following cryptosystem relies on that. We won’t worry much about the
precise meaning of something being computationally hard, but in this setting it can be seen as any (known) algorithm
taking a very large ammount of time compared to the entries.

The Massey-Omura cryptosystem:
There is a publicly agreed q (power of a prime number), and we work in the field Fq.
Each user selects an integer between 0 and q − 1, and these are kept secret. Let us call this numbers eA for Alice

and eB for Bob. Alice and Bob can each find their own dA, dB such that eAdA ≡ eBdB ≡ 1 (mod q − 1), and still
keep them secret.

In order for Alice to send a message P to Bob. She first sends P eA to Bob, then Bob replies back with the message
P eAeB .

Finally Alice gives back the message P eAeBdA to Bob.
For this problem you may assume without proof that in Fq \ 0 there is an element α, such that any number in

Fq \ 0 can be written in the form αn, for some integer n.
Problem 3.10:

Explain why all the steps can be performed by Alic and Bob, with neither knowing the keys (eA, dA), (eB , dB) of
the other person, and Bob not knowing the starting number P .

Explain how Bob can determine the original P that Alice meant to send, but no one else can decipher this, even
knowing all three messages that were sent between Alice and Bob.
Solution 3.10:
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Let p be an odd prime number
Let (Z/pnZ)× be the set of numbers less than pn that are coprime with pn

For this problem you may assume without proof that in Fp \ 0 there is an element α, such that any number x in
Fp \ 0 can be written in the form x = αm, for some integer m.
Problem 3.11:

(1) Compute how many elements are in (Z/pnZ)×
(2) Show that there exists α in (Z/pnZ)×, such that any element x in (Z/pnZ)× can be written as x = αm.

Solution 3.11:
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Problem 3.12:
Show that in (Z/pnZ)×, any element can be written in the form 2m, where m is an integer.

Solution 3.12:
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