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Partial Derivatives
Max stole Mark’s template; Prepared on April 12, 2024

Part 1: Derivatives
Our goal today is to introduce derivatives as the best linear approximation of a function. We will see
some other interpretations (slope of tangent line, rate of change of a function) and how they all mean
the same thing, but we will avoid heavy computations (especially ones with limits).

Given a function f : Rn → Rm, what does it mean for f to be linear?

Definition 1:
Recall that a function f : Rn → Rm is said to be linear if f(x⃗+ y⃗) = f(x⃗) + f(y⃗) and f(rx⃗) = rf(x⃗)
for r ∈ R and x, y ∈ Rn.

For simplicity, let’s consider the case that n,m = 1, i.e., f : R → R. Then f is linear if
f(x+ y) = f(x) + f(y) and f(xy) = f(x)f(y) for all x, y ∈ R. As we learned in the Linear Algebra
packet, linear functions are quite convenient to work with. We can represent them as matrices.
In our case, a linear function f : R → R can be represented by a 1-by-1 matrix, which is just a real
number. So f(x) = rx for some r ∈ R.
Linear functions are extremely convenient and easy to work with, but most functions are not linear!
It would be very convenient if they were though...

Problem 2:
Is the function f(x) = x2 linear?

Problem 3:
Can you describe what the graph of a linear function f : R → R looks like geometrically? What
shape(s) can it make? Try some examples and see what you can get.

It would be great if we could make functions be always linear. Unfortunately, this doesn’t work
because most functions are not linear. But as it turns out, most functions that you’ll encounter on a
daily basis are almost linear.

Definition 4:
Given a function f : R → R, and a point x ∈ R, we define the derivative of f at r to be a linear map
A : R → R such that f(x+ h)− f(x)−A(h) is “as small as possible” relative to h.

Important Concept

We will define formally what “as small as possible” means, but the idea of this definition is
that f(x+ h) ≈ A(h) + f(x) is the best linear approximation of f around x.

When x increases by h, how much should f(x) increase? The answer can be approximated easily by a
linear approximation. If we have f(x+ h) ≈ f(x) +A(h), then we are saying that when x increases
by h, then f(x) increases by approximately A(h). So A(h) measures the “rate of change” of f at x.

Example 5:
Let f(x) = x2, x0 = 1, h = 0.5.
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x

f(x)

f(x) = x2

(x0, f(x0))

(x0 + h, f(x0 + h))

Notice how the line between (x0 + h, f(x0 + h)) and (x0, f(x0)) is very very close to matching the
graph of f(x)!

Problem 6:
What is the equation of the line passing through (x0, f(x0)) and (x0 + h, f(x0 + h))?

Problem 7:
Let z ∈ [x0, x0 + h]. Use the line to approximate f(z) in terms of f(x) and z − x.
Hint: plug in z to the equation of the line you got in the previous problem. If f(z) matches the line
very closely, we can approximate f(z) by the y-coordinate of the line at z.

If you’ve seen derivatives before, you may recognise f(x0+h)−f(x0)
h as being closely related to the

definition of the derivative you were given. Forget that! We will define derivatives today in a way
that will generalise much more easily to n dimensions.
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At the beginning of this section, I said our goal was to avoid heavy computations involving limits.
Unfortunately, defining derivatives without limits at all is very difficult. So let’s do some examples of
limits.

Definition 8:
A limit of a function f(x) at a point x0 is the value that f approaches at x0.
It may be the case that f(x0) is not defined, but the limit may still be defined. It also may be the
case that f(x0) exists but is not equal to the limit of f(x) at x0, although we will not be considering
any functions today where that may be possible.

Example 9:
Consider f(x) = x at x0 = 0. What does f(x) approach at 0?

x

f(x)

f(x) = x

When x = 0.1, f(0.1) = 0.1. When x = 0.01, f(x) = 0.01. So f(x) gets closer and closer to 0 as x gets
closer and closer to 0. Thus, we say f(x) approaches 0 when x approaches 0. This is written as
lim
x→0

f(x) = 0 (this is read as “the limit of f as x approaches 0 is 0”).

Problem 10:
What does f(x) = x2 approach at x0 = 0? Hint: this is as easy as it sounds.

Example 11:

Let’s try to evaluate lim
x→0

f(x) when f(x) = x2+x
x .

x

f(x)

f(x) = x2+x
x

Notice that this function is not defined at 0! So we can’t just plug in 0 and find the answer. Instead,
we plug in values very close to 0 and see what we get: f(0.1) = 1.1, f(0.01) = 1.01, f(0.001) = 1.001.
So we can experiment and find lim

x→0
f(x) = 1. We can prove that our guess is correct by noticing that,

when x ̸= 0, f(x) = x+ 1, so we can plug in f(0) = 1 here.
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Definition 12:
Given a function f(x) : R → R, we say f is of class o(x) if when x is very small, f(x) is “smaller”
than x (in other words, f(x) goes to 0 “faster” than x does). Formally,

f(x) ∈ o(x) ⇐⇒ lim
x→0

|f(x)|
|x|

= 0

Problem 13:
Is f(x) = x of class o(x)? What about f(x) = x2? f(x) = x3? f(x) =

√
x?

Problem 14:
Prove that if f(x) is linear, then f(x) ∈ o(x) if and only if f(x) = 0 for every x ∈ R.
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Problem 15:
Prove that if f(x) is a polynomial, then f(x) ∈ o(x) if and only if f has no linear or constant terms
(i.e. f(x) = a0x

2 + a1x
3 + . . . ).

So now that we have introduced all of the important technology, we can redefine the derivative
formally.

Definition 16:

Important Definition

Given a function f : R → R, and a point x ∈ R, we define the derivative of f at r to be a
linear map A : R → R such that f(x+ h)− f(x)−A(h) is of class o(h).

Example 17:
Let f(x) = x. We want to find the derivative of f(x) at x = 1. So we write

f(x+ h)− f(x)−A(h) = f(1 + h)− f(1)−A(h)

= 1 + h− 1−A(h)

= h−A(h)

So if we let A(h) = h (which is definitely linear!), we see that f(x+ h)− f(x)−A(h) = 0, which is
definitely of class o(h).

Problem 18:
Compute the derivative of f(x) = x2 at x = 2 using this method.

Problem 19:
Prove that the derivative of f(x) = xn at x0 = 1 is A(h) = nh.
Hint: the Binomial Theorem will help.
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Problem 20:
Prove that the derivative is unique. That is, if f(x) : R → R and r ∈ R, then if we have two linear
maps A and B so that f(r + h)− f(r)−A(h) ∈ o(h) and f(r + h)− f(r)−B(h) ∈ o(h), we have
A = B.
This tells us that our linear approximation f(x0 + h) ≈ f(x0) +A(h) is the best possible linear
approximation, since it is the unique linear approximation with error of class o(h).

Definition 21:
Given a function f(x) : R → R, we define f ′(x) (read as “the derivative of f”) as the function where
f ′(x) is the (unique) matrix A that is the derivative of f at x.

Example 22:
If f(x) = x2, then at a point x0, we have

(x0 + h)2 − x2
0 −Ax0(h) = x2

0 + 2x0h+ h2 − x2
0 −Ax0(h)

= 2x0h+ h2 −Ax0
(h)

So we can define Ax0(h) := 2x0h (which is linear), so that 2x0h+ h2 −Ax0(h) = h2 ∈ o(h). Then, our
derivative is given by

f ′(x0) = Ax0
=

[
2x0

]
Since a 1-by-1 matrix is just a real number, we see that f ′(x0) = 2x0. Thus, when f(x) = x2, we have
f ′(x) = 2x.

Problem 23:
Find the derivative of f(x) = xn.
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Problem 24:
Prove that (f(x) + g(x))′ = f ′(x) + g′(x) and that for r ∈ R, (r · f(x))′ = r · f ′(x).
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Part 2: Geometry of Derivatives

Problem 25:
Consider the graph of f(x) = x2 below.

x

f(x)

f(x) = x2

(1, 1)

Notice that 12 = 1, so (1, 1) is on our graph. Draw some lines through (1, 1). Is there a tangent line
to our graph at (1, 1)? Is it unique?
So while most functions aren’t linear, we can approximate most functions with linear functions.
Given a function f : R → R, and a point r ∈ R, we say that the tangent line to the graph of f at r is
the derivative of f at r. (Yes, I know, we already defined derivatives. We’ll prove they are the same
at the end of this section.)

Example 26:
Let’s visually find the derivative of f(x) = x3 at (1, 1).

x

f(x)

f(x) = x3

(1, 1)

3x− 2

If we graph the line tangent to f(x) = x3 at (1, 1) we see that it has a slope of 3 and hits the y-axis
at y = −2. Thus, the line is 3x− 2.
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Problem 27:
Let f(x) = x2 again. If I tell you that the slope of the tangent line of f(x) at (10, 100) is 20, is this
enough information to find the entire line? That is, can you find the y-intercept from this
information?

Problem 28:
Is f(x) = 3x− 2 linear?

So if the slope of the tangent line is enough information, let’s just keep that information. So given a
function f : R → R, we can define the derivative f ′(x) : R → R, where f ′(x) is defined to be the
slope of the tangent line to f at x.

Problem 29:
Calculate the derivative of f(x) = x2 by plugging in values, finding the slope, and guessing an answer.

This is really not a convenient way to calculate derivatives! But it is a very important way to
understand derivatives that extends very naturally to higher dimensions.
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How can we verify that this definition agrees with the definition we gave before? Let’s look at an
example where f(x) = x2, x0 = 1, h = 0.5.

x

f(x)

f(x) = x2

(x0, f(x0))

(x0 + h, f(x0 + h))
(x0 + h, f(x0) + 2x0h)

2x− 1

In the above graph, we can see our best linear approximation f(x0) + 2x0h alongside f(x0 + h).
Geometrically, it makes sense that the tangent line is the best linear approximation to a curve. If you
zoom in on a curve enough, it starts to look like a straight line. Which line? The tangent line.
Consider the graph of f(x) = x2 zoomed in around (1, 1). As we zoom in, the graph is
indistinguishable from the tangent line! So the tangent line is definitely the best linear approximation.
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Problem 30:
(For students who have seen derivatives before). You may have seen the derivative defined as

lim
h→0

f(x0 + h)− f(x0)

h

Prove that this definition agrees with our definition.
Hint: use Problem 7.

11



Part 3: Higher Dimensions
Let’s consider a function f : Rn → R (for simplicity we will only work with scalar-valued functions
today).
How can we define the derivative of f?
If we use the definition of the derivative you may have seen, we run into an immediate issue

f ′(v⃗0):=
?

lim
h⃗→0

f(v⃗0 + h⃗)− f(v⃗0)

h⃗

This is impossible to compute, since we can’t divide vectors! We also don’t know what h⃗ → 0 means!
But our definition we saw today does work.

Definition 31:
For a function f : Rn → R and a vector v ∈ Rn, we define the derivative of f at r as the (unique, as
we proved) linear map A : Rn → R so that

f(v⃗ + h⃗)− f (⃗h)−A(⃗h) ∈ o(⃗h).

Note that o(⃗h) is in fact well-defined, as the class of functions g : Rn → R so that

lim
h⃗→0

|g(⃗h)|
|⃗h|

= 0

Note that now A is a matrix (and not a square matrix).

Example 32:
Let’s find the derivative of f(x, y) = x+ y at v⃗ = (1, 1). Write h⃗ = (h0, h1). We have

f(v⃗ + h⃗)− f(v⃗)−A(⃗h) = f(1 + h0, 1 + h1)− f(1, 1)−A(h0, h1)

= 1 + h0 + 1 + h1 − (1 + 1)−A(h0, h1)

= h0 + h1 −A(h0, h1)

So we can let A =
[
1 1

]
so that A(⃗h) = A(h0, h1) =

[
1 1

]
·
[
h0

h1

]
= h0 + h1. So the derivative of

f(x, y) = x+ y is
[
1 1

]
, a 1-by-2 matrix.

Problem 33:
Let f(x), g(x) : R → R. Prove that the derivative of h(x, y) = f(x) + g(y) at (x0, y0) is[
f ′(x0) g′(y0)

]
.
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We can also define the derivative of a function f : Rn → R as a function f ′. But it isn’t a function
from Rn to R!

Problem 34:
For a function f : Rn → R, what is the domain and codomain of f ′?

Instead, we can consider the coordinate functions of the derivative. Recall that for a matrix
A =

[
a1 a2 . . . an

]
, we have A(1, 0, . . . , 0) = a1, A(0, 1, 0, . . . , 0) = a2, . . . , A(0, 0, . . . , 0, 1) = an.

For simplicity, we write ei for the vector that is all 0s except a 1 in the ith spot, so that A(ei) = ai.

Definition 35:
If we have a function K so that K(x) is a 1-by-n matrix, we define the coordinate function of K
in the ith position to be the function K ′

i(x) := (K ′(x))(ei).

Problem 36:
For a function f : Rn → R, what is the domain and codomain of f ′

1?

Problem 37:
If f : R2 → R is the function given by f(x, y) = x2 + y, find f ′

1(x) and f ′
2(x).
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Definition 38:

Important Definition

Given a function f : Rn → R, we define the partial derivative of f with respect to xi to
be f ′

i : R
n → R.

We denote this by

∂f(x)

∂xi
=

∂

∂xi
f(x)

Typically, we don’t use x1, x2, x3, . . . but x, y, z, . . . . Then we can say

∂

∂x
f(x, y, z) = f ′

1(x, y, z)

∂

∂y
f(x, y, z) = f ′

2(x, y, z)

∂

∂z
f(x, y, z) = f ′

3(x, y, z)

Note that the order of the variables matters! ∂
∂xf(x, y, z) ̸=

∂
∂xf(y, x, z)!

Problem 39:
Compute ∂

∂xf(x, y) if f(x, y) = 3x− y.

Example 40:
What if we want to compute ∂

∂xf(x, y) if f(x, y) = x2y − y100 log(y)− cosh(y)π + arccsch(erfi(y))?
We can’t separate the x and y part in order to use Problem 33.
The terms including x are very simple, but rest of the terms are exceptionally complicated. The only
process we know now is computing f ′(x, y) as a matrix and finding its coordinate functions. But this
is very hard! It would be very convenient if we could just ignore y when computing a partial
derivative with respect to x...

Problem 41:
Compute ∂

∂xx
2y.
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We can define a new function, g(x), given by g(x) = f(x, 2) = 2x2.

Problem 42:
Find g′(x).

More generally, for any y0 ∈ R, we can define gy0(x) = f(x, y0). Our g before would then be g2(x).

Problem 43:
For any y0 ∈ R, find (gy0

(x))′.

Problem 44:
Define h(x, y) = (gy(x))

′. Is this well-defined? Can you write an explicit formula for h(x, y)?
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Do you notice a connection between the answers to Problem 41 and Problem 44? We will prove that
these two processes produce the same output!

Example 45:
Let’s consider f(x, y) = x2y. Here is a plot of f(x, y). The curve is the cross-section at y = 2, given
by the curve z = 2x2.

1
1.5 2

2.5 3 1

2

3

0

20

This curve is the graph of the function g2(x) = 2x2; in general, the graph of gy0
(x) is precisely the

cross-section of the graph of f(x, y) at y = y0.
We don’t know what it means to ask what the derivative of this curve is in three dimensions. But if
we ignore the y-axis (since we set y = 2), we can look at this curve in the x− z plane (scaled down so
it doesn’t take up the entire page):

x

z

z = 2x2

(1, 2, 1)

Here, the derivative is something we know how to find. For our example, let’s find it at x = 1 – it is
g′2(1) = 4x. In general, we can take the cross-section at y = y0 and compute the derivative as we did
before, to get (gy0

)′(x) = 2xy0.

On the other hand, the derivative of f(x, y) = x2y at (1, 2) can be thought of as the tangent plane to
the surface at (1, 2). (This is hard to visualise!)
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Remember that ∂
∂xf(x, y) is defined to be the first coordinate of f(x, y). This is the same thing as

taking the cross-section of our plane in the x axis (i.e. taking the intersection of this plane with the
plane y = 2). The intersection of two planes is a line, and the line is exactly the tangent line we
found before!

So our two methods produced the same line, and therefore produce the same value of the derivative.
Nothing is special about f(x, y) = x2y – this works in general. So we see that for any f : R2 → R,
with gy0

(x) := f(x, y0), that
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(
∂

∂x
f(x, y)

)
(x0, y0) = (gy0

)′(x0)

Problem 46:
Calculate ∂

∂xf(x, y) and
∂
∂yf(x, y) for f(x, y) = xy using both methods and verify they are the same.

Problem 47:
Calculate ∂

∂xf(x, y) for the function f(x, y) given in Example 40.
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