Multiplicative Functions

ORMC

04/14/24

1 Multiplicative Functions

A function $f : \mathbb{N} \to \mathbb{N}$ is *multiplicative* when for every $m, n \in \mathbb{N}$ with gcd(m, n) = 1, f(mn) = f(m)f(n).

Problem 1.1. Suppose f is a multiplicative function, and you know how to calculate $f(p^k)$ whenever p is prime. How can you calculate f(n) in general?

Problem 1.2 (Putnam 1963 A2). Let $f : \mathbb{N} \to \mathbb{N}$ be a multiplicative function such that f(2) = 2 and f is strictly increasing, that is, for m < n, f(m) < f(n).

Show that for all n, f(n) = n.

2 Sums of Divisors

Definition 2.1. For any positive integer n, let $\sigma(n) = \sum_{d|n} d$ be the sum of the divisors of n, including n.

Problem 2.2 (Putnam 1969 B1). The positive integer n is divisible by 24. Show that the sum of all the positive divisors of n - 1 (including 1 and n - 1) is also divisible by 24. Hint: Put divisors in pairs.

Problem 2.3. Calculate $\sigma(p^k)$ when p is prime.

Problem 2.4. Show that $\sigma(n)$ is multiplicative.

Problem 2.5 (BAMO 2019 Problem 5). Every positive integer is either nice or naughty, and the Oracle of Numbers knows which are which. However, the Oracle will not directly tell you whether a number is nice or naughty. The only questions the Oracle will answer are questions of the form "What is the sum of all nice divisors of n?," where n is a number of the questioner's choice.

Show that for any given positive integer n less than 1 million, you can determine whether n is nice or naughty by asking the Oracle at most four questions.

3 Fermat's Little Theorem

Theorem 3.1 (Fermat's Little Theorem). Let p be a prime, and a an integer not divisible by p. Then

 $a^{p-1} \equiv 1 \pmod{p}.$

Problem 3.2. Prove Fermat's Little Theorem, starting by showing that the sets

 $\{1, 2, \dots, p-1\}, \{a, 2a, \dots, (p-1)a\}$

contain the same numbers mod p.

Problem 3.3 (IMO 2005 Problem 4). Determine all positive integers relatively prime to all the terms of the infinite sequence

$$a_n = 2^n + 3^n + 6^n - 1, \ n \ge 1$$

Hint: What would a_{-1} be? What does the sequence a_1, a_2, a_3, \ldots act like mod a prime p?

Problem 3.4 (Putnam 2017 A1). Let S be the smallest set of positive integers such that

- 2 is in S,
- n is in S whenever n^2 is in S,
- $(n+5)^2$ is in S whenever n is in S.

Which positive integers are not in S? (The set S is "smallest" in the sense that S is contained in any other such set.)

4 Euler's Totient Function

Definition 4.1. For any positive integer n, let $\phi(n)$ be the number of numbers k with $1 \le k < n$ and gcd(k,n) = 1. This is historically called *Euler's Totient Function*.

Problem 4.2. Calculate $\phi(p^k)$ for p prime.

Problem 4.3. Show that ϕ is multiplicative.

This function can be used to generalize Fermat's Little Theorem to general numbers, and not just primes:

Theorem 4.4 (Euler's Theorem). Let m be a positive integer, and a an integer with gcd(a, m) = 1. Then

$$a^{\phi(m)} \equiv 1 \pmod{m}.$$

Problem 4.5 (USAMO 1991 Problem 3). Show that, for any fixed integer $n \ge 1$, the sequence

2,
$$2^2$$
, 2^{2^2} , $2^{2^{2^2}}$, ... (mod n)

is eventually constant.

5 A Bonus Problem

Problem 5.1 (Putnam 2021 A5). Let A be the set of all integers n such that $1 \le n \le 2021$ and gcd(n, 2021) = 1. For every nonnegative integer j, let $S(j) = \sum_{n \in A} n^j$. Determine all values of j such that S(j) is a multiple of 2021.