The Math Behind Bookmaking: Notes and Solutions

1. $30

2. Give those who have a less likely probability a higher payout.

3. \(P(A) = \frac{y}{x+y} \)

4. \(\frac{x}{y} \) odds = \(\frac{y}{x+y} \)

5. The odds form a contest.

6. 4.5, 22%, 1.25, 80%, 3.67, 27.3%

7. 11, 2.2, 1.87

8. Decimal odds, treat these as payout multipliers.

9. 7.32, 72.6

10. Maintain probability ratios but increase implied probabilities to decrease payouts.

11. \(\frac{1}{5}, \frac{2}{5}, \frac{6}{5} \)

12. Profit is $20.

13. 14.4%, 22.4%, 31.2%. Decimal odds are \((1.87)^n\), where \(n\) is the number of legs.

14. Convert multipliers to implied probabilities and use Problem 13. Straight bets are more profitable since the overround is less. A loss is what the books win, which is represented by overround.

15. Suppose \(x \) is the hit rate. Then set expected value to be greater than 0, and the expressions should be \(x > \sqrt[3]{\frac{1}{3}} \Rightarrow x \approx 57.7\% \) for 2-legs, \(x > \sqrt[5]{\frac{1}{5}} \Rightarrow x \approx 58.5\% \) for 3-legs, and \(x > \sqrt[10]{\frac{1}{10}} \Rightarrow x \approx 57.7\% \) for 4-legs.

16. 28

17. Approximately \(\frac{1}{276000} \). \((1.67)^{28} \times 2^4\) is the multiplier, which can be converted to implied probability.

18. Solve using the strategy from Problem 17 and consider the binomial theorem.

19. Decimal odds should be between \(\left(\begin{array}{c}28 \\ 4\end{array}\right)(2.5)^4(1.67)^{24}(2)^4\) and \(\left(\begin{array}{c}28 \\ 5\end{array}\right)(2.5)^5(1.67)^{23}(2)^4\).

20. It could help guarantee that the bets would be profitable, rather than risking the third leg for a loss.

21. Shifted lines, high probability of original bet hitting, etc.

