Slide Rules

Prepared by Mark on April 4, 2024

Dad says that anyone who can't use a slide rule is a cultural illiterate and should not be allowed to vote.

Have Space Suit — Will Travel, 1958

Part 1: Logarithms

Definition 1:

The logarithm is the inverse of the exponent. That is, if $b^p = c$, then $\log_b c = p$. In other words, $\log_b c$ asks the question "what power do I need to raise b to to get c?" In both b^p and $\log_b c$, the number b is called the base.

Problem 1:

Evaluate the following by hand:

A: $\log_{10}(1000)$

B: $\log_2{(64)}$

C: $\log_2(\frac{1}{4})$

D: $\log_x(x)$ for any x

E: $log_x(1)$ for any x

Definition 2:

There are a few ways to write logarithms:

$$\log x = \log_{10} x$$
$$\lg x = \log_{10} x$$
$$\ln x = \log_e x$$

Definition 3:

The *domain* of a function is the set of values it can take as inputs.

The range of a function is the set of values it can produce.

For example, the domain and range of f(x) = x is \mathbb{R} , all real numbers.

The domain of f(x) = |x| is \mathbb{R} , and its range is $\mathbb{R}^+ \cup \{0\}$, all positive real numbers and 0.

Note that the domain and range of a function are not always equal.

Problem 2:

What is the domain of $f(x) = 5^x$? What is the range of $f(x) = 5^x$?

Problem 3:

What is the domain of $f(x) = \log x$? What is the range of $f(x) = \log x$?

Problem 4:

Prove the following identities:

A:
$$\log_b(b^x) = x$$

$$\mathbf{B:}\ b^{\log_b x} = x$$

C:
$$\log_b(xy) = \log_b(x) + \log_b(y)$$

D:
$$\log_b\left(\frac{x}{y}\right) = \log_b\left(x\right) - \log_b\left(y\right)$$

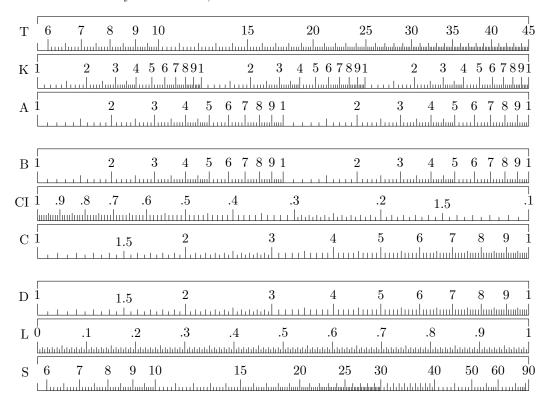
E:
$$\log_b(x^y) = y \log_b(x)$$

Part 2: Introduction

Mathematicians, physicists, and engineers needed to quickly solve complex equations even before computers were invented.

The *slide rule* is an instrument that uses the logarithm to solve this problem. Before you continue, cut out and assemble your slide rule.

There are four scales on your slide rule, each labeled with a letter on the left side:



Each scale's "generating function" is on the right:

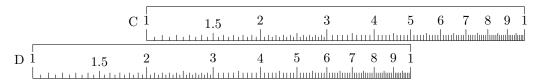
- T: tan
- K: x^3
- A,B: x^2
- CI: $\frac{1}{\pi}$
- C, D: x
- L: $\log_{10}(x)$
- S: sin

Once you understand the layout of your slide rule, move on to the next page.

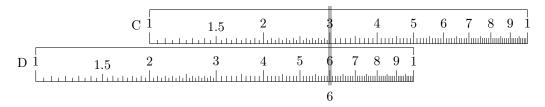
Part 3: Multiplication

We'll use the C and D scales of your slide rule to multiply.

Say we want to multiply 2×3 . First, move the *left-hand index* of the C scale over the smaller number, 2:



Then we'll find the second number, 3 on the C scale, and read the D scale under it:



Of course, our answer is 6.

Problem 5:

What is 1.15×2.1 ?

Use your slide rule.

Note that your answer isn't exact. $1.15 \times 2.1 = 2.415$, but an answer accurate within two decimal places is close enough for most practical applications.

Look at your C and D scales again. They contain every number between 1 and 10, but no more than that. What should we do if we want to calculate 32×210 ?

Problem 6:

Using your slide rule, calculate 32×210 .

Problem 7:

Compute the following:

A: 1.44×52 **B:** 0.38×1.24 **C:** $\pi \times 2.35$

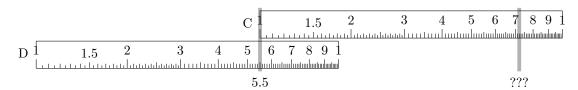
Problem 8:

Note that the numbers on your C and D scales are logarithmically spaced.

С 1	1.5	2	3	4	5 	6	7 l	8 IIIII	9	1
D 1	1.5	2	3	4	5	6	7 	8	9	一 1 Ш

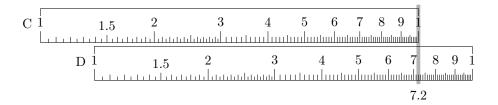
Why does our multiplication procedure work?

Now we want to compute 7.2×5.5 :

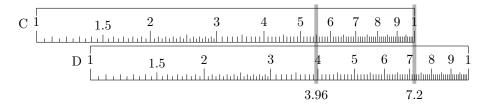


No matter what order we go in, the answer ends up off the scale. There must be another way.

Look at the far right of your C scale. There's an arrow pointing to the 10 tick, labeled right-hand index. Move it over the larger number, 7.2:



Now find the smaller number, 5.5, on the C scale, and read the D scale under it:



Our answer should be about $7 \times 5 = 35$, so let's move the decimal point: $5.5 \times 7.2 = 39.6$. We can do this by hand to verify our answer.

Problem 9:

Why does this work?

Problem 10:

Compute the following using your slide rule:

A: 9×8

B: 15×35

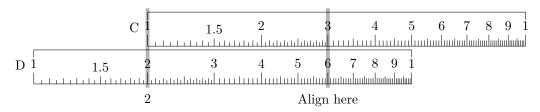
C: 42.1×7.65

D: 6.5^2

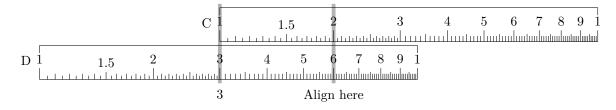
Part 4: Division

Now that you can multiply, division should be easy. All you need to do is work backwards. Let's look at our first example again: $3 \times 2 = 6$.

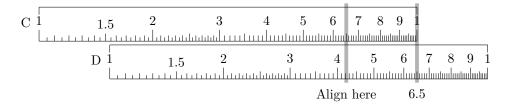
We can easily see that $6 \div 3 = 2$



and that $6 \div 2 = 3$:



If your left-hand index is off the scale, read the right-hand one. Consider $42.25 \div 6.5 = 6.5$:



Place your decimal points carefully.

Problem 11:

Compute the following using your slide rule.

A: $135 \div 15$

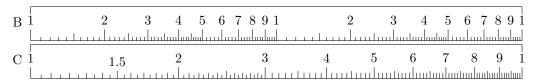
B: $68.2 \div 0.575$

C: $(118 \times 0.51) \div 6.6$

Part 5: Squares, Cubes, and Roots

Now, take a look at scales A and B, and note the label on the right: x^2 . If C, D are x, A and B are x^2 , and K is x^3 .

Finding squares of numbers up to ten is straightforward: just read the scale. Square roots are also easy: find your number on B and read its pair on C.



Problem 12:

Compute the following.

A: 1.5^2

B: 3.1²

C: 7^3

D: $\sqrt{14}$

E: $\sqrt[3]{150}$

Problem 13:

Compute the following.

A: 42^2

B: $\sqrt{200}$

C: $\sqrt{2000}$

D: $\sqrt{0.9}$

E: $\sqrt[3]{0.12}$

Part 6: Inverses

Try finding $1 \div 32$ using your slide rule.

The procedure we learned before doesn't work!

This is why we have the CI scale, or the "C Inverse" scale.

Problem 14:

Figure out how the CI scale works and compute the following:

- $\mathbf{A}: \frac{1}{7}$
- B: $\frac{1}{120}$ C: $\frac{1}{\pi}$

Part 7: Logarithms Base 10

When we take a logarithm, the resulting number has two parts: the *characteristic* and the *mantissa*. The characteristic is the integral (whole-numbered) part of the answer, and the mantissa is the fractional part (what comes after the decimal).

For example, $\log_{10} 18 = 1.255$, so in this case the characteristic is 1 and the mantissa is 0.255.

Problem 15:

Approximate the following logs without a slide rule. Find the exact characteristic, and approximate the mantissa.

A: $\log_{10} 20$ **B:** $\log_2 18$

Now, find the L scale on your slide rule. As you can see on the right, its generating function is $\log_{10} x$.

Problem 16:

Compute the following logarithms using your slide rule.

You'll have to find the characteristic yourself, but your L scale will give you the mantissa. Don't forget your log identities!

A: $\log_{10} 20$

B: $\log_{10} 15$

C: $\log_{10} 150$

D: $\log_{10} 0.024$

Part 8: Logarithms in Any Base

Our slide rule easily computes logarithms in base 10, but we can also use it to find logarithms in any base.

Proposition 1:

This is usually called the *change-of-base* formula:

$$\log_b a = \frac{\log_c a}{\log_c b}$$

Problem 17:

Using log identities, prove Proposition 1.

Problem 18:

Approximate the following:

A: $\log_2 56$

B: $\log_{5.2} 26$

C: $\log_{12} 500$ D: $\log_{43} 134$

This page unintentionally left blank.

