## De Bruijn Sequences

Prepared by Mark on April 2, 2024

## Part 1: Introduction

## Example 1:

A certain electronic lock has two buttons: 0 and 1. It opens as soon as the correct two-digit code is entered, completely ignoring previous inputs. For example, if the correct code is 10 , the lock will open once the sequence 010 is entered.

Naturally, there are $2^{2}=4$ possible combinations that open this lock.
If don't know the lock's combination, we could try to guess it by trying all four combinations. This would require eight key presses: 0001101100.

Problem 2:
There is, of course, a better way.
Unlock this lock with only 5 keypresses.

Now, consider the same lock, now set with a three-digit binary code.

## Problem 3:

How many codes are possible?

## Problem 4:

Show that there is no solution with fewer than three keypresses

## Problem 5:

What is the shortest sequence that is guaranteed to unlock the lock?
Hint: You'll need 10 digits.

## Part 2: Words

## Definition 6:

An alphabet is a set of symbols.
For example, $\{0,1\}$ is an alphabet of two symbols, and $\{a, b, c\}$ is an alphabet of three.

## Definition 7:

A word over an alphabet $A$ is a sequence of symbols in that alphabet.
For example, 00110 is a word over the alphabet $\{0,1\}$.
We'll let $\varnothing$ denote the empty word, which is a valid word over any alphabet.

## Definition 8:

Let $v$ and $w$ be words over the same alphabet.
We say $v$ is a subword of $w$ if $v$ is contained in $w$.
In other words, $v$ is a subword of $w$ if we can construct $v$
by removing a few characters from the start and end of $w$.
For example, 11 is a subword of 011 , but 00 is not.

## Definition 9:

Recall Example 1. Let's generalize this to the $n$-subword problem:
Given an alphabet $A$ and a positive integer $n$, we want a word over $A$ that contains all possible length- $n$ subwords. The shortest word that solves a given $n$-subword problem is called the optimal solution.

## Problem 10:

List all subwords of 110 .
Hint: There are six.

## Definition 11:

Let $\mathcal{S}_{n}(w)$ be the number of subwords of length $n$ in a word $w$.
Problem 12:
Find the following:

- $\mathcal{S}_{n}(101001)$ for $n \in\{0,1, \ldots, 6\}$
- $\mathcal{S}_{n}($ abccac $)$ for $n \in\{0,1, \ldots, 6\}$


## Problem 13:

Let $w$ be a word over an alphabet of size $k$.
Prove the following:

- $\mathcal{S}_{n}(w) \leq k^{n}$
- $\mathcal{S}_{n}(w) \geq \mathcal{S}_{n-1}(w)-1$
- $\mathcal{S}_{n}(w) \leq k \times \mathcal{S}_{n-1}(w)$


## Definition 14:

Let $v$ and $w$ be words over the same alphabet.
The word $v w$ is the word formed by writing $v$ after $w$.
For example, if $v=1001$ and $w=10, v w$ is 100110.
Problem 15:
Let $F_{k}$ denote the word over the alphabet $\{0,1\}$ obtained from the following relation:

$$
F_{0}=0 ; \quad F_{1}=1 ; \quad F_{k}=F_{k-1} F_{k-2}
$$

We'll call this the Fibonacci word of order $k$.

- What are $F_{3}, F_{4}$, and $F_{5}$ ?
- Compute $\mathcal{S}_{0}$ through $\mathcal{S}_{5}$ for $F_{5}$.
- Show that the length of $F_{k}$ is the $(k+2)^{\text {th }}$ Fibonacci number. Hint: Induction.


## Problem 16:

Let $C_{k}$ denote the word over the alphabet $\{0,1\}$ obtained by
concatenating the binary representations of the integers $0, \ldots, 2^{k}-1$.
For example, $C_{1}=0, C_{2}=011011$, and $C_{3}=011011100101110111$.

- How many symbols does the word $C_{k}$ contain?
- Compute $\mathcal{S}_{0}, \mathcal{S}_{1}, \mathcal{S}_{2}$, and $\mathcal{S}_{3}$ for $C_{3}$.
- Show that $\mathcal{S}_{k}\left(C_{k}\right)=2^{k}-1$.
- Show that $\mathcal{S}_{n}\left(C_{k}\right)=2^{n}$ for $n<k$.

Hint: If $v$ is a subword of $w$ and $w$ is a subword of $u, v$ must be a subword of $u$.
In other words, the "subword" relation is transitive.

## Problem 17:

Convince yourself that $C_{n+1}$ provides a solution to the $n$-subword problem over $\{0,1\}$.
Note: $C_{n+1}$ may or may not be an optimal solution-but it is a valid solution
Which part of Problem 16 shows that this is true?

## Part 3: De Bruijn Words

Before we continue, we'll need to review some basic graph theory.

## Definition 18:

A directed graph consists of nodes and directed edges.
An example is shown below. It consists of three vertices (labeled $a, b, c$ ), and five edges (labeled $0, \ldots, 4$ ).


## Definition 19:

A path in a graph is a sequence of adjacent edges,
In a directed graph, edges $a$ and $b$ are adjacent if $a$ ends at the node which $b$ starts at.
For example, consider the graph above.
The edges 0 and 1 are not adjacent, because 0 and 1 both end at $b$.
0 and 2 , however, are: 0 ends at $b$, and 2 starts at $b$. $[0,3,2]$ is a path in the graph above, drawn below.

## Definition 20:

An Eulerian path is a path that visits each edge of a graph exactly once.
An Eulerian cycle is an Eulerian path that starts and ends on the same node.

## Problem 21:

Find the single unique Eulerian cycle in the graph below.


## Theorem 22:

A directed graph contains an Eulerian cycle iff...

- There is a path between every pair of nodes, and
- every node has as many "in" edges as it has "out" edges.

If the a graph contains an Eulerian cycle, it must contain an Eulerian path. (why?)
Some graphs contain an Eulerian path, but not a cycle. In this case, both conditions above must still hold, but the following exceptions are allowed:

- There may be at most one node where (number in - number out) $=1$
- There may be at most one node where (number in - number out) $=-1$

We won't provide a proof of this theorem today. However, you should convince yourself that it is true: if any of these conditions are violated, why do we know that an Eulerian cycle (or path) cannot exist?

## Definition 23:

Now, consider the $n$-subword problem over $\{0,1\}$.
We'll call the optimal solution to this problem a De Bruijn ${ }^{1}$ word of order $n$.

## Problem 24:

Let $w$ be the an order- $n$ De Bruijn word, and denote its length with $|w|$.
Show that the following bounds always hold:

- $|w| \leq n 2^{n}$
- $|w| \geq 2^{n}+n-1$


## Remark 25:

Now, we'd like to show that the length of a De Bruijn word is always $2^{n}+n-1$
That is, that the optimal solution to the subword problem always has $2^{n}+n-1$ letters.
We'll do this by construction: for a given $n$, we want to build a word with length $2^{n}+n-1$ that solves the binary $n$-subword problem.

## Definition 26:

Consider a $n$-length word $w$.
The prefix of $w$ is the word formed by the first $n-1$ letters of $w$.
The suffix of $w$ is the word formed by the last $n-1$ letters of $w$.
For example, the prefix of the word 1101 is 110 , and its suffix is 101 . The prefix and suffix of any one-letter word are both $\varnothing$.

## Definition 27:

A De Bruijn graph of order $n$, denoted $G_{n}$, is constructed as follows:

- Nodes are created for each word of length $n-1$.
- A directed edge is drawn from $a$ to $b$ if the suffix of $a$ matches the prefix of $b$. Note that a node may have an edge to itself.
- We label each edge with the last letter of $b$.
$G_{2}$ and $G_{3}$ are shown below.

$G_{3}$


[^0]Problem 28:
Draw $G_{4}$.

## Problem 29:

- Show that $G_{n}$ has $2^{n-1}$ nodes and $2^{n}$ edges;
- that each node has two outgoing edges;
- and that there are as many edges labeled 0 as are labeled 1.


## Problem 30:

Show that $G_{4}$ always contains an Eulerian path.
Hint: Theorem 22

## Theorem 31:

We can now easily construct De Bruijn words for a given $n$ :

- Construct $G_{n}$,
- find an Eulerian cycle in $G_{n}$,
- then, construct a De Bruijn word by writing the label of our starting vertex, then appending the label of every edge we travel.


## Problem 32:

Find De Bruijn words of orders 2, 3, and 4 .

Let's quickly show that the process described in Theorem 31 indeed produces a valid De Bruijn word.

## Problem 33:

How long will a word generated by the above process be?

## Problem 34:

Show that a word generated by the process in Theorem 31 contains every possible length- $n$ subword. In other words, show that $\mathcal{S}_{n}(w)=2^{n}$ for a generated word $w$.

## Remark 35:

- We found that Theorem 31 generates a word with length $2^{n}+n-1$ in Problem 33,
- and we showed that this word always solves the $n$-subword problem in Problem 34.
- From Problem 24, we know that any solution to the binary $n$-subword problem must have at least $2^{n}+n-1$ letters.
- Finally, Problem 30 guarantees that it is possible to generate such a word in any $G_{n}$. Thus, we have shown that the process in Theorem 31 generates ideal solutions to the $n$-subword problem, and that such solutions always exist. We can now conclude that for any $n$, the binary $n$-subword problem may be solved with a word of length $2^{n}+n-1$.


## Part 4: Line Graphs

## Problem 36:

Given a graph $G$, we can construct a graph called the line graph of $G$ (denoted $\mathcal{L}(G)$ ) by doing the following:

- Creating a node in $\mathcal{L}(G)$ for each edge in $G$
- Drawing a directed edge between every pair of nodes $a, b$ in $\mathcal{L}(G)$ if the corresponding edges in $G$ are adjacent.
That is, if edge $b$ in $G$ starts at the node at which $a$ ends.


## Problem 37:

Draw the line graph for the graph below.
Have an instructor check your solution.


## Definition 38:

We say a graph $G$ is connected if there is a path between any two vertices of $G$.

## Problem 39:

Show that if $G$ is connected, $\mathcal{L}(G)$ is connected.

## Definition 40:

Consider $\mathcal{L}\left(G_{n}\right)$, where $G_{n}$ is the $n^{\text {th }}$ order De Bruijn graph.
We'll need to label the vertices of $\mathcal{L}\left(G_{n}\right)$. To do this, do the following:

- Let $a$ and $b$ be nodes in $G_{n}$
- Let x be the first letter of $a$
- Let y , the last letter of $b$
- Let $\overline{\mathrm{p}}$ be the prefix/suffix that $a$ and $b$ share. Note that $a=\mathrm{x} \overline{\mathrm{p}}$ and $b=\overline{\mathrm{p}} \mathrm{y}$,
Now, relabel the edge from $a$ to $b$ as x $\overline{p y}$.
Use these new labels to name nodes in $\mathcal{L}\left(G_{n}\right)$.


## Problem 41:

Construct $\mathcal{L}\left(G_{2}\right)$ and $\mathcal{L}\left(G_{3}\right)$. What do you notice?
Hint: What are $\mathcal{L}\left(G_{2}\right)$ and $\mathcal{L}\left(G_{3}\right)$ ? We've seen them before!
You may need to re-label a few edges.

## Part 5: Sturmian Words

A De Bruijn word is the shortest word that contains all subwords of a given length.
Let's now solve a similar problem: given an alphabet, we want to construct a word that contains exactly $m$ distinct subwords of length $n$.

In general, this is a difficult problem. We'll restrict ourselves to a special case:
We'd like to find a word that contains exactly $m+1$ distinct subwords of length $m$ for all $m<n$.

## Definition 42:

We say a word $w$ is a Sturmian word of order $n$ if $\mathcal{S}_{m}(w)=m+1$ for all $m \leq n$.
We say $w$ is a minimal Sturmian word if there is no shorter Sturmian word of that order.

## Problem 43:

Show that the length of a Sturmian word of order $n$ is at least $2 n$.

## Problem 44:

Construct $R_{3}$ by removing four edges from $G_{3}$.
Show that each of the following is possible:

- $R_{3}$ does not contain an Eulerian path.
- $R_{3}$ contains an Eulerian path, and this path constructs a word $w$ with $\mathcal{S}_{3}(w)=4$ and $\mathcal{S}_{2}(w)=4$.
- $R_{3}$ contains an Eulerian path, and this path constructs a word $w$ that is a minimal Sturmian word of order 3.


## Problem 45:

Construct $R_{2}$ by removing one edge from $G_{2}$, then construct $\mathcal{L}\left(R_{2}\right)$.

- If this line graph has four edges, set $R_{3}=\mathcal{L}\left(R_{2}\right)$.
- If not, remove one edge from $R_{2}$ so that an Eulerian path still exists and set $R_{3}$ to the resulting graph.
Label each edge in $R_{3}$ with the last letter of its target node.
Let $w$ be the word generated by an Eulerian path in this graph, as before.
Attempt the above construction a few times. Is $w$ a minimal Sturmian word?


## Theorem 46:

We can construct a miminal Sturmian word of order $n \geq 3$ as follows:

- Start with $G_{2}$, create $R_{2}$ by removing one edge.
- Construct $\mathcal{L}\left(G_{2}\right)$, remove an edge if necessary.

The resulting graph must have an 4 edges and an Eulerian path. Call this $R_{3}$.

- Repeat the previous step to construct a sequence of graphs $R_{n}$. $R_{n-1}$ is used to create $R_{n}$, which has $n+1$ edges and an Eulerian path. Label edges with the last letter of their target vertex.
- Construct a word $w$ using the Eulerian path, as before.

This is a minimal Sturmian word.
For now, assume this theorem holds. We'll prove it in the next few problems.

## Problem 47:

Construct a minimal Sturmain word of order 4.

## Problem 48:

Construct a minimal Sturmain word of order 5.

## Problem 49:

Argue that the words we get by Theorem 46 are mimimal Sturmain words.
That is, the word $w$ has length $2 n$ and $\mathcal{S}_{m}(w)=m+1$ for all $m \leq n$.


[^0]:    ${ }^{1}$ Dutch. Rhymes with "De Grown."

