De Bruijn Sequences

Prepared by Mark on April 2, 2024

Part 1: Introduction

Example 1:

A certain electronic lock has two buttons: 0 and 1. It opens as soon as the correct two-digit code is entered, completely ignoring previous inputs. For example, if the correct code is 10, the lock will open once the sequence 010 is entered.

Naturally, there are $2^2 = 4$ possible combinations that open this lock. If don't know the lock's combination, we could try to guess it by trying all four combinations. This would require eight key presses: 0001101100.

Problem 2:

There is, of course, a better way. Unlock this lock with only 5 keypresses.

Now, consider the same lock, now set with a three-digit binary code.

Problem 3: How many codes are possible?

Problem 4: Show that there is no solution with fewer than three keypresses

Problem 5:

What is the shortest sequence that is guaranteed to unlock the lock? *Hint:* You'll need 10 digits.

Part 2: Words

Definition 6:

An *alphabet* is a set of symbols. For example, {0, 1} is an alphabet of two symbols, and {a, b, c} is an alphabet of three.

Definition 7:

A word over an alphabet A is a sequence of symbols in that alphabet. For example, 00110 is a word over the alphabet $\{0, 1\}$. We'll let \emptyset denote the empty word, which is a valid word over any alphabet.

Definition 8:

Let v and w be words over the same alphabet. We say v is a *subword* of w if v is contained in w. In other words, v is a subword of w if we can construct vby removing a few characters from the start and end of w. For example, 11 is a subword of 011, but 00 is not.

Definition 9:

Recall Example 1. Let's generalize this to the *n*-subword problem:

Given an alphabet A and a positive integer n, we want a word over A that contains all possible length-n subwords. The shortest word that solves a given n-subword problem is called the *optimal* solution.

Problem 10:

List all subwords of 110. *Hint:* There are six.

Definition 11:

Let $\mathcal{S}_n(w)$ be the number of subwords of length n in a word w.

Problem 12:

Find the following:

- $S_n(101001)$ for $n \in \{0, 1, ..., 6\}$
- $\mathcal{S}_n(\texttt{abccac})$ for $n \in \{0, 1, \dots, 6\}$

Problem 13:

Let w be a word over an alphabet of size k. Prove the following:

Definition 14:

Let v and w be words over the same alphabet. The word vw is the word formed by writing v after w. For example, if v = 1001 and w = 10, vw is 100110.

Problem 15:

Let F_k denote the word over the alphabet $\{0, 1\}$ obtained from the following relation:

$$F_0 = 0; F_1 = 1; F_k = F_{k-1}F_{k-2}$$

We'll call this the Fibonacci word of order k.

- What are F_3 , F_4 , and F_5 ?
- Compute \$\mathcal{S}_0\$ through \$\mathcal{S}_5\$ for \$F_5\$.
 Show that the length of \$F_k\$ is the \$(k+2)^{th}\$ Fibonacci number. *Hint:* Induction.

Problem 16:

Let C_k denote the word over the alphabet $\{0, 1\}$ obtained by concatenating the binary representations of the integers 0, ..., $2^k - 1$. For example, $C_1 = 0$, $C_2 = 011011$, and $C_3 = 011011100101110111$.

- How many symbols does the word C_k contain?
- Compute S_0 , S_1 , S_2 , and S_3 for C_3 .
- Show that $\mathcal{S}_k(C_k) = 2^k 1$. Show that $\mathcal{S}_n(C_k) = 2^n$ for n < k.

Hint: If v is a subword of w and w is a subword of u, v must be a subword of u. In other words, the "subword" relation is transitive.

Problem 17:

Convince yourself that C_{n+1} provides a solution to the *n*-subword problem over $\{0, 1\}$. Note: C_{n+1} may or may not be an *optimal* solution—but it is a *valid* solution Which part of Problem 16 shows that this is true?

Part 3: De Bruijn Words

Before we continue, we'll need to review some basic graph theory.

Definition 18:

A *directed graph* consists of nodes and directed edges.

An example is shown below. It consists of three vertices (labeled a, b, c), and five edges (labeled 0, ..., 4).

Definition 19:

A *path* in a graph is a sequence of adjacent edges, In a directed graph, edges a and b are adjacent if a ends at the node which b starts at.

For example, consider the graph above.

The edges 0 and 1 are not adjacent, because 0 and 1 both *end* at b. 0 and 2, however, are: 0 ends at b, and 2 starts at b. [0, 3, 2] is a path in the graph above, drawn below.

Definition 20:

An *Eulerian path* is a path that visits each edge of a graph exactly once.

An Eulerian cycle is an Eulerian path that starts and ends on the same node.

Problem 21:

Find the single unique Eulerian cycle in the graph below.

Theorem 22:

A directed graph contains an Eulerian cycle iff...

- There is a path between every pair of nodes, and
- every node has as many "in" edges as it has "out" edges.

If the a graph contains an Eulerian cycle, it must contain an Eulerian path. (why?)

Some graphs contain an Eulerian path, but not a cycle. In this case, both conditions above must still hold, but the following exceptions are allowed:

• There may be at most one node where (number in - number out) = 1

• There may be at most one node where (number in - number out) = -1

We won't provide a proof of this theorem today. However, you should convince yourself that it is true: if any of these conditions are violated, why do we know that an Eulerian cycle (or path) cannot exist?

Definition 23:

Now, consider the *n*-subword problem over $\{0, 1\}$. We'll call the optimal solution to this problem a *De Bruijn*¹ word of order *n*.

Problem 24:

Let w be the an order-n De Bruijn word, and denote its length with |w|. Show that the following bounds always hold:

- $|w| \le n2^n$
- $\bullet \ |w| \ge 2^n + n 1$

Remark 25:

Now, we'd like to show that the length of a De Bruijn word is always $2^n + n - 1$ That is, that the optimal solution to the subword problem always has $2^n + n - 1$ letters. We'll do this by construction: for a given n, we want to build a word with length $2^n + n - 1$ that solves the binary n-subword problem.

Definition 26:

Consider a n-length word w.

The *prefix* of w is the word formed by the first n-1 letters of w.

The suffix of w is the word formed by the last n-1 letters of w.

For example, the prefix of the word 1101 is 110, and its suffix is 101. The prefix and suffix of any one-letter word are both $\varnothing.$

Definition 27:

A De Bruijn graph of order n, denoted G_n , is constructed as follows:

- Nodes are created for each word of length n-1.
- A directed edge is drawn from a to b if the suffix of a matches the prefix of b. Note that a node may have an edge to itself.
- We label each edge with the last letter of b.
- G_2 and G_3 are shown below.

$$G_2$$

 G_3

¹Dutch. Rhymes with "De Grown."

Problem 28: Draw G_4 .

Problem 29:

- Show that G_n has 2^{n-1} nodes and 2^n edges;
- that each node has two outgoing edges;
- and that there are as many edges labeled 0 as are labeled 1.

Problem 30:

Show that G_4 always contains an Eulerian path. Hint: Theorem 22

Theorem 31:

We can now easily construct De Bruijn words for a given n:

- Construct G_n ,
- find an Eulerian cycle in G_n ,
- then, construct a De Bruijn word by writing the label of our starting vertex, then appending the label of every edge we travel.

Problem 32:

Find De Bruijn words of orders 2, 3, and 4.

Let's quickly show that the process described in Theorem 31 indeed produces a valid De Bruijn word.

Problem 33:

How long will a word generated by the above process be?

Problem 34:

Show that a word generated by the process in Theorem 31 contains every possible length-*n* subword. In other words, show that $S_n(w) = 2^n$ for a generated word *w*.

Remark 35:

- We found that Theorem 31 generates a word with length $2^n + n 1$ in Problem 33,
- and we showed that this word always solves the *n*-subword problem in Problem 34.
- From Problem 24, we know that any solution to the binary *n*-subword problem must have at least $2^n + n 1$ letters.
- Finally, Problem 30 guarantees that it is possible to generate such a word in any G_n .

Thus, we have shown that the process in Theorem 31 generates ideal solutions to the *n*-subword problem, and that such solutions always exist. We can now conclude that for any *n*, the binary *n*-subword problem may be solved with a word of length $2^n + n - 1$.

Part 4: Line Graphs

Problem 36:

Given a graph G, we can construct a graph called the *line graph* of G (denoted $\mathcal{L}(G)$) by doing the following:

- Creating a node in $\mathcal{L}(G)$ for each edge in G
- Drawing a directed edge between every pair of nodes a, b in $\mathcal{L}(G)$ if the corresponding edges in G are adjacent. That is, if edge b in G starts at the node at which a ends.

Problem 37:

Draw the line graph for the graph below. Have an instructor check your solution.

Definition 38:

We say a graph G is *connected* if there is a path between any two vertices of G.

Problem 39:

Show that if G is connected, $\mathcal{L}(G)$ is connected.

Definition 40:

Consider $\mathcal{L}(G_n)$, where G_n is the n^{th} order De Bruijn graph.

We'll need to label the vertices of $\mathcal{L}(G_n)$. To do this, do the following:

- Let a and b be nodes in G_n
- Let ${\tt x}$ be the first letter of a
- Let y, the last letter of b
- Let $\overline{\mathbf{p}}$ be the prefix/suffix that a and b share. Note that $a = \mathbf{x}\overline{\mathbf{p}}$ and $b = \overline{\mathbf{p}}\mathbf{y}$,

Now, relabel the edge from a to b as $x\overline{p}y$. Use these new labels to name nodes in $\mathcal{L}(G_n)$.

Problem 41:

Construct $\mathcal{L}(G_2)$ and $\mathcal{L}(G_3)$. What do you notice?

Hint: What are $\mathcal{L}(G_2)$ and $\mathcal{L}(G_3)$? We've seen them before! You may need to re-label a few edges.

Part 5: Sturmian Words

A De Bruijn word is the shortest word that contains all subwords of a given length. Let's now solve a similar problem: given an alphabet, we want to construct a word that contains exactly m distinct subwords of length n.

In general, this is a difficult problem. We'll restrict ourselves to a special case: We'd like to find a word that contains exactly m + 1 distinct subwords of length m for all m < n.

Definition 42:

We say a word w is a Sturmian word of order n if $S_m(w) = m + 1$ for all $m \leq n$. We say w is a minimal Sturmian word if there is no shorter Sturmian word of that order.

Problem 43:

Show that the length of a Sturmian word of order n is at least 2n.

Problem 44:

Construct R_3 by removing four edges from G_3 . Show that each of the following is possible:

- R_3 does not contain an Eulerian path.
- R_3 contains an Eulerian path, and this path constructs a word w with $S_3(w) = 4$ and $S_2(w) = 4$.
- R_3 contains an Eulerian path, and this path constructs a word w that is a minimal Sturmian word of order 3.

Problem 45:

Construct R_2 by removing one edge from G_2 , then construct $\mathcal{L}(R_2)$.

- If this line graph has four edges, set R₃ = L(R₂).
 If not, remove one edge from R₂ so that an Eulerian path still exists and set R₃ to the resulting graph.

Label each edge in R_3 with the last letter of its target node.

Let w be the word generated by an Eulerian path in this graph, as before.

Attempt the above construction a few times. Is w a minimal Sturmian word?

Theorem 46:

We can construct a miminal Sturmian word of order $n \ge 3$ as follows:

- Start with G_2 , create R_2 by removing one edge.
- Construct $\mathcal{L}(G_2)$, remove an edge if necessary. The resulting graph must have an 4 edges and an Eulerian path. Call this R_3 .
- Repeat the previous step to construct a sequence of graphs R_n . R_{n-1} is used to create R_n , which has n + 1 edges and an Eulerian path. Label edges with the last letter of their target vertex.
- Construct a word w using the Eulerian path, as before. This is a minimal Sturmian word.

For now, assume this theorem holds. We'll prove it in the next few problems.

Problem 47:

Construct a minimal Sturmain word of order 4.

Problem 48:

Construct a minimal Sturmain word of order 5.

Problem 49:

Argue that the words we get by Theorem 46 are minimal Sturmain words. That is, the word w has length 2n and $S_m(w) = m + 1$ for all $m \leq n$.