De Bruijn Sequences
Prepared by Mark on April 2, 2024

Part 1: Introduction

Example 1:
A certain electronic lock has two buttons: 0 and 1. It opens as soon as the correct two-digit code is entered, completely ignoring previous inputs. For example, if the correct code is 10, the lock will open once the sequence 010 is entered.

Naturally, there are $2^2 = 4$ possible combinations that open this lock.
If don’t know the lock’s combination, we could try to guess it by trying all four combinations. This would require eight key presses: 0001101100.

Problem 2:
There is, of course, a better way.
Unlock this lock with only 5 keypresses.

Now, consider the same lock, now set with a three-digit binary code.

Problem 3:
How many codes are possible?

Problem 4:
Show that there is no solution with fewer than three keypresses.

Problem 5:
What is the shortest sequence that is guaranteed to unlock the lock?

Hint: You’ll need 10 digits.
Part 2: Words

Definition 6:
An alphabet is a set of symbols.
For example, \{0, 1\} is an alphabet of two symbols, and \{a, b, c\} is an alphabet of three.

Definition 7:
A word over an alphabet \(A\) is a sequence of symbols in that alphabet.
For example, 00110 is a word over the alphabet \{0, 1\}.
We’ll let \(\emptyset\) denote the empty word, which is a valid word over any alphabet.

Definition 8:
Let \(v\) and \(w\) be words over the same alphabet.
We say \(v\) is a subword of \(w\) if \(v\) is contained in \(w\).
In other words, \(v\) is a subword of \(w\) if we can construct \(v\)
by removing a few characters from the start and end of \(w\).
For example, 11 is a subword of 011, but 00 is not.

Definition 9:
Recall Example 1. Let’s generalize this to the \(n\)-subword problem:
Given an alphabet \(A\) and a positive integer \(n\), we want a word over \(A\) that contains all possible
length-\(n\) subwords. The shortest word that solves a given \(n\)-subword problem is called the optimal solution.

Problem 10:
List all subwords of 110.
Hint: There are six.

Definition 11:
Let \(S_n(w)\) be the number of subwords of length \(n\) in a word \(w\).

Problem 12:
Find the following:
- \(S_n(101001)\) for \(n \in \{0, 1, \ldots, 6\}\)
- \(S_n(abccac)\) for \(n \in \{0, 1, \ldots, 6\}\)
Problem 13:
Let w be a word over an alphabet of size k.
Prove the following:
\begin{itemize}
 \item $S_n(w) \leq k^n$
 \item $S_n(w) \geq S_{n-1}(w) - 1$
 \item $S_n(w) \leq k \times S_{n-1}(w)$
\end{itemize}
Definition 14:
Let v and w be words over the same alphabet.
The word vw is the word formed by writing v after w.
For example, if $v = 1001$ and $w = 10$, vw is 100110.

Problem 15:
Let F_k denote the word over the alphabet $\{0, 1\}$ obtained from the following relation:

$$F_0 = 0; \quad F_1 = 1; \quad F_k = F_{k-1}F_{k-2}$$

We’ll call this the Fibonacci word of order k.
- What are F_3, F_4, and F_5?
- Compute S_0 through S_5 for F_5.
- Show that the length of F_k is the $(k + 2)^{\text{th}}$ Fibonacci number.

Hint: Induction.
Problem 16:
Let C_k denote the word over the alphabet $\{0, 1\}$ obtained by concatenating the binary representations of the integers $0, \ldots, 2^k - 1$.
For example, $C_1 = 0$, $C_2 = 011011$, and $C_3 = 011011100101110111$.

- How many symbols does the word C_k contain?
- Compute S_0, S_1, S_2, and S_3 for C_3.
- Show that $S_k(C_k) = 2^k - 1$.
- Show that $S_n(C_k) = 2^n$ for $n < k$.

Hint: If v is a subword of w and w is a subword of u, v must be a subword of u. In other words, the “subword” relation is transitive.

Problem 17:
Convince yourself that C_{n+1} provides a solution to the n-subword problem over $\{0, 1\}$.

Note: C_{n+1} may or may not be an optimal solution—but it is a valid solution.
Which part of Problem 16 shows that this is true?
Part 3: De Bruijn Words

Before we continue, we’ll need to review some basic graph theory.

Definition 18:
A directed graph consists of nodes and directed edges.
An example is shown below. It consists of three vertices (labeled a, b, c),
and five edges (labeled 0, ..., 4).

![Directed Graph Example]

Definition 19:
A path in a graph is a sequence of adjacent edges.
In a directed graph, edges a and b are adjacent if a ends at the node which b starts at.
For example, consider the graph above.
The edges 0 and 1 are not adjacent, because 0 and 1 both end at b.
0 and 2, however, are: 0 ends at b, and 2 starts at b. $[0, 3, 2]$ is a path in the graph above, drawn below.

Definition 20:
An Eulerian path is a path that visits each edge of a graph exactly once.
An Eulerian cycle is an Eulerian path that starts and ends on the same node.

Problem 21:
Find the single unique Eulerian cycle in the graph below.

![Problem Graph]

Theorem 22:
A directed graph contains an Eulerian cycle iff...

- There is a path between every pair of nodes, and
- every node has as many “in” edges as it has “out” edges.

If the a graph contains an Eulerian cycle, it must contain an Eulerian path. (why?)
Some graphs contain an Eulerian path, but not a cycle. In this case, both conditions above must still hold, but the following exceptions are allowed:

- There may be at most one node where (number in – number out) = 1
- There may be at most one node where (number in – number out) = -1

We won’t provide a proof of this theorem today. However, you should convince yourself that it is true: if any of these conditions are violated, why do we know that an Eulerian cycle (or path) cannot exist?
Definition 23:
Now, consider the n-subword problem over $\{0, 1\}$. We'll call the optimal solution to this problem a De Bruijn word of order n.

Problem 24:
Let w be the an order-n De Bruijn word, and denote its length with $|w|$.
Show that the following bounds always hold:
- $|w| \leq n2^n$
- $|w| \geq 2^n + n - 1$

Remark 25:
Now, we'd like to show that the length of a De Bruijn word is always $2^n + n - 1$
That is, that the optimal solution to the subword problem always has $2^n + n - 1$ letters.
We'll do this by construction: for a given n, we want to build a word with length $2^n + n - 1$ that solves the binary n-subword problem.

Definition 26:
Consider a n-length word w.
The prefix of w is the word formed by the first $n - 1$ letters of w.
The suffix of w is the word formed by the last $n - 1$ letters of w.
For example, the prefix of the word 1101 is 110, and its suffix is 101. The prefix and suffix of any one-letter word are both \emptyset.

Definition 27:
A De Bruijn graph of order n, denoted G_n, is constructed as follows:
- Nodes are created for each word of length $n - 1$.
- A directed edge is drawn from a to b if the suffix of a matches the prefix of b.
 - Note that a node may have an edge to itself.
- We label each edge with the last letter of b.
G_2 and G_3 are shown below.

1Dutch. Rhymes with “De Grown.”
Problem 28:
Draw G_4.
Problem 29:
• Show that G_n has 2^{n-1} nodes and 2^n edges;
• that each node has two outgoing edges;
• and that there are as many edges labeled 0 as are labeled 1.

Problem 30:
Show that G_4 always contains an Eulerian path.
Hint: Theorem 22

Theorem 31:
We can now easily construct De Bruijn words for a given n:
• Construct G_n,
• find an Eulerian cycle in G_n,
• then, construct a De Bruijn word by writing the label of our starting vertex, then appending the label of every edge we travel.

Problem 32:
Find De Bruijn words of orders 2, 3, and 4.
Let’s quickly show that the process described in Theorem 31 indeed produces a valid De Bruijn word.

Problem 33:
How long will a word generated by the above process be?

Problem 34:
Show that a word generated by the process in Theorem 31 contains every possible length-n subword. In other words, show that $S_n(w) = 2^n$ for a generated word w.

Remark 35:
- We found that Theorem 31 generates a word with length $2^n + n - 1$ in Problem 33,
- and we showed that this word always solves the n-subword problem in Problem 34.
- From Problem 24, we know that any solution to the binary n-subword problem must have at least $2^n + n - 1$ letters.
- Finally, Problem 30 guarantees that it is possible to generate such a word in any G_n.

Thus, we have shown that the process in Theorem 31 generates ideal solutions to the n-subword problem, and that such solutions always exist. We can now conclude that for any n, the binary n-subword problem may be solved with a word of length $2^n + n - 1$.
Problem 36:
Given a graph G, we can construct a graph called the
line graph of G (denoted $L(G)$) by doing the following:
- Creating a node in $L(G)$ for each edge in G
- Drawing a directed edge between every pair of nodes a, b in $L(G)$
 if the corresponding edges in G are adjacent.
That is, if edge b in G starts at the node at which a ends.

Problem 37:
Draw the line graph for the graph below.
Have an instructor check your solution.

Definition 38:
We say a graph G is *connected* if there is a path between any two vertices of G.

Problem 39:
Show that if G is connected, $L(G)$ is connected.
Definition 40:
Consider $\mathcal{L}(G_n)$, where G_n is the n^{th} order De Bruijn graph.

We’ll need to label the vertices of $\mathcal{L}(G_n)$. To do this, do the following:

- Let a and b be nodes in G_n
- Let x be the first letter of a
- Let y, the last letter of b
- Let \overline{p} be the prefix/suffix that a and b share.

Note that $a = x\overline{p}$ and $b = \overline{p}y$.

Now, relabel the edge from a to b as $x\overline{p}y$.
Use these new labels to name nodes in $\mathcal{L}(G_n)$.

Problem 41:
Construct $\mathcal{L}(G_2)$ and $\mathcal{L}(G_3)$. What do you notice?

Hint: What are $\mathcal{L}(G_2)$ and $\mathcal{L}(G_3)$? We’ve seen them before!
You may need to re-label a few edges.
Part 5: Sturmian Words

A De Bruijn word is the shortest word that contains all subwords of a given length. Let’s now solve a similar problem: given an alphabet, we want to construct a word that contains exactly \(m \) distinct subwords of length \(n \).

In general, this is a difficult problem. We’ll restrict ourselves to a special case: We’d like to find a word that contains exactly \(m + 1 \) distinct subwords of length \(m \) for all \(m < n \).

Definition 42:

We say a word \(w \) is a Sturmian word of order \(n \) if \(S_m(w) = m + 1 \) for all \(m \leq n \).

We say \(w \) is a minimal Sturmian word if there is no shorter Sturmian word of that order.

Problem 43:

Show that the length of a Sturmian word of order \(n \) is at least \(2n \).
Problem 44:
Construct R_3 by removing four edges from G_3.
Show that each of the following is possible:

- R_3 does not contain an Eulerian path.
- R_3 contains an Eulerian path, and this path constructs a word w with $S_3(w) = 4$ and $S_2(w) = 4$.
- R_3 contains an Eulerian path, and this path constructs a word w that is a minimal Sturmian word of order 3.
Problem 45:
Construct R_2 by removing one edge from G_2, then construct $L(R_2)$.

- If this line graph has four edges, set $R_3 = L(R_2)$.
- If not, remove one edge from R_2 so that an Eulerian path still exists and set R_3 to the resulting graph.

Label each edge in R_3 with the last letter of its target node.
Let w be the word generated by an Eulerian path in this graph, as before.

Attempt the above construction a few times. Is w a minimal Sturmian word?
Theorem 46:
We can construct a minimal Sturmian word of order $n \geq 3$ as follows:
• Start with G_2, create R_2 by removing one edge.
• Construct $L(G_2)$, remove an edge if necessary.
 The resulting graph must have an 4 edges and an Eulerian path. Call this R_3.
• Repeat the previous step to construct a sequence of graphs R_n.
 R_{n-1} is used to create R_n, which has $n + 1$ edges and an Eulerian path.
 Label edges with the last letter of their target vertex.
• Construct a word w using the Eulerian path, as before.
 This is a minimal Sturmian word.
For now, assume this theorem holds. We’ll prove it in the next few problems.

Problem 47:
Construct a minimal Sturmian word of order 4.
Problem 48:
Construct a minimal Sturmain word of order 5.
Problem 49:
Argue that the words we get by Theorem 46 are minimal Sturmain words. That is, the word w has length $2n$ and $S_m(w) = m + 1$ for all $m \leq n$.