OLGA RADKO MATH CIRCLE, SPRING 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet 1: Quadratic Residues

An element r in a ring R is called an nth root of unity if $r^n = \underbrace{r \cdot r \cdots r}_{n \text{ times}} = 1$. More generally an element is called a root of unity if it is an nth root of unity for some n. Problem 1.1:

In the following rings determine which elements are *n*th roots of unity for n = 1, 2, 4.

(1) \mathbb{F}_3

(2) \mathbb{F}_5

(3) \mathbb{F}_7

 $(4) \mathbb{Q}$

Solution 1.1:

Let p be an odd prime number.

Problem 1.2:

(1) Show that the product of all the different nonzero elements in \mathbb{F}_p is equal to p-1. (2) Show that every nonzero element in \mathbb{F}_p is a (p-1)th root of unity.

Solution 1.2:

 2

We say that m is a quadratic residue modulo p if there exists some integer x, such that

$$x^2 \equiv m \pmod{p}.$$

We define the Legendre symbol as follows

$$\left(\frac{m}{p}\right) = \begin{cases} 0 & p \text{ divides } m \\ 1 & m \text{ is a quadratic residue modulo } p \\ -1 & m \text{ is not a quadratic residue modulo } p \end{cases}$$

Problem 1.3:

Compute the following Legendre symbols:

- $\begin{array}{c} (1) & \left(\frac{2}{3}\right) \\ (2) & \left(\frac{4}{7}\right) \\ (3) & \left(\frac{3}{5}\right) \end{array}$
- $(4) \quad \left(\frac{8}{11}\right)$

Solution 1.3:

For the following problems you may use without proof the following fact: For any prime number p, there exists a number α , such that, any nonzero number in \mathbb{F}_p can be written as α^n for some n. **Problem 1.4:** Show that $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$ Solution 1.4:

Problem 1.5:

Show that the Legendre symbols satisfies the following property:

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

Solution 1.5:

Law of quadratic reciprocity

Let q and p be odd prime numbers, then:

$$\left(\frac{q}{p}\right) = \left(-1\right)^{\frac{(p-1)(q-1)}{4}} \left(\frac{p}{q}\right)$$

Problem 1.6:

Use the law of quadratic reciprocity and the multiplicative property to compute the following:

 $\begin{array}{c} (1) & \left(\frac{15}{67}\right) \\ (2) & \left(\frac{20}{113}\right) \\ (3) & \left(\frac{7411}{9283}\right) \end{array}$

Solution 1.6:

6

The Legendre symbol allows us to determine when an element is a quadratic residue modulo p, i.e. when an element in \mathbb{F}_p has a square root, without having to compute the squares of all possible elements. Now we will focus on how to find a square root if it exists.

Problem 1.7:

Let p be a prime number, with $p \equiv 3 \pmod{4}$.

Show that if $\left(\frac{a}{p}\right) = 1$, then $a^{\frac{p+1}{4}}$ is a square root of a (in \mathbb{F}_p). Solution 1.7:

Let p be an odd prime number. It may be written as $p = 2^r s + 1$, where s is an odd number and r is a positive integer.

Problem 1.8: Show that if $\left(\frac{a}{p}\right) = 1$, then there exists a 2^r th root of unity μ , such that: $\mu a^{\frac{s+1}{2}}$ is a square root of a (in \mathbb{F}_p). Solution 1.8:

Let p be an odd prime number. It may be written as $p = 2^r s + 1$, where s is an odd number and r is a positive integer.

Problem 1.9: Show that if $\left(\frac{b}{p}\right) = -1$, then any 2^r th root of unity is a power of b^s (in \mathbb{F}_p) Solution 1.9:

Problem 1.10:

Find if the following elements have square roots, and if they do compute them.

- (1) 15 in \mathbb{F}_{37}
- (2) 35 in \mathbb{F}_{73}
- (3) 186 in \mathbb{F}_{401} (4) 168921 in \mathbb{F}_{35227}

Solution 1.10:

10

Problem 1.11:

Using the previous problems give a list of steps to determine if an element of \mathbb{F}_p has a square root (in \mathbb{F}_p) and how to find them if they exist. Solution 1.11:

Problem 1.12:

Find for which primes p the following polynomials have solutions in $\mathbb{F}_p:$

(1) $x^{2} + 7$ (2) $x^{2} + 3x - 2$ (3) $x^{2} + 6x + 15$ (4) $x^{4} + 2x^{3} + 17x^{2} + 30x + 30$

Solution 1.12:

12

Problem 1.13:

Show that in a field there are at most n different nth roots of unity. Is this true for rings that are not fields? Hint: Notice that a root of unity is a solution to the equation $x^n = 1$.

Solution 1.13:

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA. *Email address:* fzamora@math.princeton.edu

UCLA MATHEMATICS DEPARTMENT, Box 951555, Los Angeles, CA 90095-1555, USA. $\mathit{Email}\ address:\ \texttt{jmoraga@math.ucla.edu}$