Worksheet 1: Quadratic Residues

An element r in a ring R is called an nth root of unity if $r^{n}=\underbrace{r \cdot r \cdots r}_{n \text { times }}=1$.
More generally an element is called a root of unity if it is an nth root of unity for some n.

Problem 1.1:

In the following rings determine which elements are nth roots of unity for $n=1,2,4$.
(1) \mathbb{F}_{3}
(2) \mathbb{F}_{5}
(3) \mathbb{F}_{7}
(4) \mathbb{Q}

Solution 1.1:

Let p be an odd prime number.

Problem 1.2:

(1) Show that the product of all the different nonzero elements in \mathbb{F}_{p} is equal to $p-1$.
(2) Show that every nonzero element in \mathbb{F}_{p} is a $(p-1)$ th root of unity.

Solution 1.2:

We say that m is a quadratic residue modulo p if there exists some integer x, such that

$$
x^{2} \equiv m \quad(\bmod p)
$$

We define the Legendre symbol as follows

Problem 1.3:

Compute the following Legendre symbols:
(1) $\left(\frac{2}{3}\right)$
(2) $\left(\frac{4}{7}\right)$
(3) $\left(\frac{3}{5}\right)$
(4) $\left(\frac{8}{11}\right)$

Solution 1.3:

For the following problems you may use without proof the following fact: For any prime number p, there exists a number α, such that, any nonzero number in \mathbb{F}_{p} can be written as α^{n} for some n.
Problem 1.4:
Show that $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p)$
Solution 1.4:

Problem 1.5:
Show that the Legendre symbols satisfies the following property:

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

Solution 1.5:

Law of quadratic reciprocity

Let q and p be odd prime numbers, then:

$$
\left(\frac{q}{p}\right)=(-1)^{\frac{(p-1)(q-1)}{4}}\left(\frac{p}{q}\right)
$$

Problem 1.6:

Use the law of quadratic reciprocity and the multiplicative property to compute the following:
(1) $\left(\frac{15}{67}\right)$
(2) $\left(\frac{20}{113}\right)$
(3) $\left(\frac{7411}{9283}\right)$

Solution 1.6:

The Legendre symbol allows us to determine when an element is a quadratic residue modulo p, i.e. when an element in \mathbb{F}_{p} has a square root, without having to compute the squares of all possible elements. Now we will focus on how to find a square root if it exists.

Problem 1.7:

Let p be a prime number, with $p \equiv 3(\bmod 4)$.
Show that if $\left(\frac{a}{p}\right)=1$, then $a^{\frac{p+1}{4}}$ is a square root of $a\left(\right.$ in $\left.\mathbb{F}_{p}\right)$.
Solution 1.7:

Let p be an odd prime number. It may be written as $p=2^{r} s+1$, where s is an odd number and r is a positive integer.
Problem 1.8:
Show that if $\left(\frac{a}{p}\right)=1$, then there exists a 2^{r} th root of unity μ, such that: $\mu a^{\frac{s+1}{2}}$ is a square root of a (in \mathbb{F}_{p}). Solution 1.8:

Let p be an odd prime number. It may be written as $p=2^{r} s+1$, where s is an odd number and r is a positive integer.
Problem 1.9:
Show that if $\left(\frac{b}{p}\right)=-1$, then any 2^{r} th root of unity is a power of b^{s} (in $\left.\mathbb{F}_{p}\right)$

Solution 1.9:

Problem 1.10:
Find if the following elements have square roots, and if they do compute them.
(1) 15 in \mathbb{F}_{37}
(2) 35 in \mathbb{F}_{73}
(3) 186 in \mathbb{F}_{401}
(4) 168921 in \mathbb{F}_{35227}

Solution 1.10:

Problem 1.11:

Using the previous problems give a list of steps to determine if an element of \mathbb{F}_{p} has a square root (in \mathbb{F}_{p}) and how to find them if they exist.
Solution 1.11:

Problem 1.12:
Find for which primes p the following polynomials have solutions in \mathbb{F}_{p} :
(1) $x^{2}+7$
(2) $x^{2}+3 x-2$
(3) $x^{2}+6 x+15$
(4) $x^{4}+2 x^{3}+17 x^{2}+30 x+30$

Solution 1.12:

Problem 1.13:

Show that in a field there are at most n different nth roots of unity. Is this true for rings that are not fields?
Hint: Notice that a root of unity is a solution to the equation $x^{n}=1$.

Solution 1.13:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

