Worksheet 1: Quadratic Residues

An element \(r \) in a ring \(R \) is called an \(n \)th root of unity if \(r^n = r \cdot r \cdot \cdots r = 1 \).

More generally an element is called a root of unity if it is an \(n \)th root of unity for some \(n \).

Problem 1.1:
In the following rings determine which elements are \(n \)th roots of unity for \(n = 1, 2, 4 \).

1. \(F_3 \)
2. \(F_5 \)
3. \(F_7 \)
4. \(\mathbb{Q} \)

Solution 1.1:
Let p be an odd prime number.

Problem 1.2:

1. Show that the product of all the different nonzero elements in \mathbb{F}_p is equal to $p - 1$.
2. Show that every nonzero element in \mathbb{F}_p is a $(p - 1)$th root of unity.

Solution 1.2:
We say that m is a quadratic residue modulo p if there exists some integer x, such that
\[x^2 \equiv m \pmod{p}. \]

We define the Legendre symbol as follows
\[
\left(\frac{m}{p} \right) = \begin{cases}
0 & \text{if } p \text{ divides } m \\
1 & \text{if } m \text{ is a quadratic residue modulo } p \\
-1 & \text{if } m \text{ is not a quadratic residue modulo } p
\end{cases}
\]

Problem 1.3:
Compute the following Legendre symbols:
1. \(\left(\frac{2}{3} \right) \)
2. \(\left(\frac{4}{7} \right) \)
3. \(\left(\frac{3}{5} \right) \)
4. \(\left(\frac{8}{11} \right) \)

Solution 1.3:
For the following problems you may use without proof the following fact: For any prime number p, there exists a number α, such that, any nonzero number in \mathbb{F}_p can be written as α^n for some n.

Problem 1.4:
Show that $\left(\frac{a}{p} \right) \equiv a^{\frac{p-1}{2}} \pmod{p}$

Solution 1.4:
Problem 1.5:
Show that the Legendre symbols satisfies the following property:

\[\left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right) \]

Solution 1.5:
Law of quadratic reciprocity

Let q and p be odd prime numbers, then:

$$\left(\frac{q}{p} \right) = (-1)^{(p-1)(q-1)/4} \left(\frac{p}{q} \right)$$

Problem 1.6:

Use the law of quadratic reciprocity and the multiplicative property to compute the following:

(1) $\left(\frac{15}{67} \right)$
(2) $\left(\frac{17}{113} \right)$
(3) $\left(\frac{9411}{9283} \right)$

Solution 1.6:
The Legendre symbol allows us to determine when an element is a quadratic residue modulo p, i.e. when an element in \mathbb{F}_p has a square root, without having to compute the squares of all possible elements. Now we will focus on how to find a square root if it exists.

Problem 1.7:

Let p be a prime number, with $p \equiv 3 \pmod{4}$.

Show that if $\left(\frac{a}{p} \right) = 1$, then $a^{\frac{p+1}{4}}$ is a square root of a (in \mathbb{F}_p).

Solution 1.7:
Let p be an odd prime number. It may be written as $p = 2^r s + 1$, where s is an odd number and r is a positive integer.

Problem 1.8:
Show that if $\left(\frac{a}{p}\right) = 1$, then there exists a 2^rth root of unity μ, such that: $\mu \frac{a^{s+1}}{2}$ is a square root of a (in \mathbb{F}_p).

Solution 1.8:
Let p be an odd prime number. It may be written as $p = 2^r s + 1$, where s is an odd number and r is a positive integer.

Problem 1.9:
Show that if $\left(\frac{b}{p} \right) = -1$, then any 2^rth root of unity is a power of b^s (in \mathbb{F}_p).

Solution 1.9:
Problem 1.10:
Find if the following elements have square roots, and if they do compute them.
(1) 15 in \mathbb{F}_{37}
(2) 35 in \mathbb{F}_{73}
(3) 186 in \mathbb{F}_{401}
(4) 168921 in \mathbb{F}_{35227}

Solution 1.10:
Problem 1.11:
Using the previous problems give a list of steps to determine if an element of \mathbb{F}_p has a square root (in \mathbb{F}_p) and how to find them if they exist.

Solution 1.11:
Problem 1.12:
Find for which primes p the following polynomials have solutions in \mathbb{F}_p:
1. $x^2 + 7$
2. $x^2 + 3x - 2$
3. $x^2 + 6x + 15$
4. $x^4 + 2x^3 + 17x^2 + 30x + 30$

Solution 1.12:
Problem 1.13:
Show that in a field there are at most n different nth roots of unity.
Is this true for rings that are not fields?
Hint: Notice that a root of unity is a solution to the equation $x^n = 1$.

Solution 1.13: