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1 Decimal Approximations

Problem 1 Convert the following decimal expressions into fractions. (Recall that a bar over digits means
those digits are repeating.)

• 0.2

• 1.3

• 0.17

• 3.1415

Problem 2 Convert the following fractions into decimal expressions.

•
1

4

•
16

9

•
35

33

•
17

12
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The examples on the first page are all of rational numbers—that is, numbers that can be written as a fraction
a/b of two integers a and b. Not all real numbers are rational, a fact that we will see as soon as we have a
way to test whether a number is rational. We’ll first prove the following theorem:

Theorem 1 A number is rational if and only if its decimal expansion is either finite or eventually repeating.

To prove this theorem, we’ll have to be able to add repeating digits, as we have seen previously. As with
many infinite repeating patterns, we use the following trick to evaluate such expressions.

Problem 3 Evaluate

S = 4 + 2 + 1 +
1

2
+

1

4
+ . . .

by finding another S in the right-hand side. (Hint: Try rewriting 2 + 1 + 1/2 + 1/4 + . . . in terms of S.)

Problem 4 Evaluate

S = 10 + 1 +
1

10
+

1

100
+ . . .

by finding another S in the right-hand side.

In general, infinite sums like these examples are called geometric series. Geometric series are determined by
their first term and their ratio, which is the quotient of any two successive terms.

Problem 5 Prove the geometric series formula, which states that for any real numbers a and −1 < r < 11,

a+ ar + ar2 + ar3 + · · · = a

1− r

1|r| < 1 is a technical condition needed for the sum on the left-hand side to make sense mathematically. You will learn more
about this when you take a calculus class.
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Problem 6 Prove the ”backwards direction” of Theorem 1—that is, any decimal expression that is either
finite or eventually repeating represents a rational number. (Hint: Can you rewrite the expression S from
Problem 4 as a repeating decimal? Then generalize this and use the previous technique to solve the sums.)

Problem 7 Prove the ”forwards direction” of Theorem 1—that is, any rational number has a finite or
eventually repeating decimal expansion. (Hint: Given any fraction, try rewriting it so that the denominator
looks like the denominators you analyzed in the previous problem.)

2 Examples of Irrational Numbers

We now meet our first examples of numbers that we can show to be irrational (that is, a real number that
isn’t rational) using Theorem 1.

Problem 8 Let α be the following decimal:

α = 0.101001000100001000001 . . .

(that is, every 1 is preceded by one more zero than the last) Show that α is irrational, by showing that this
decimal expression is infinite and doesn’t repeat.
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The following examples will also be useful later. (Also note that we use the notation ” := ” meaning ”is
defined to be equal to”.)

Definition 1 Let b be an integer at least 2. The base b Liouville constant is given by

Lb :=
1

b1!
+

1

b2!
+

1

b3!
+

1

b4!
+ . . .

Problem 9 Show that the Liouville constant L10 is irrational.

(Bonus) Show that all Lb are irrational. (Hint: Think about why Theorem 1 also works with any base b
expression.)

Of course, we don’t need the decimal expansion to show that certain numbers are irrational. In fact, finding
a (possibly infinite) decimal expansion for most numbers is impossible anyway. In the traditional example
of an irrational number

√
2 = 1.4142 . . . , we could be stuck forever waiting for the decimal expansion to

terminate or repeat, a possibility we can never rule out no matter how many digits we find.

Problem 10 Show that
√
2 is irrational. (Hint: Any fraction can be fully reduced—that is, the numerator

and denominator made to be coprime. So assume
√
2 = a/b is a fully reduced fraction. You should derive

some contradiction.)

Problem 11 Can you modify your solution to the previous problem to show that
√
3 is irrational? How

about 3
√
2? How about

√
2 +

√
3?
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Finally, we have the two most famous examples of irrational numbers, e and π, though we will not prove the
irrationality of π. To prove the irrationality of e, we use the following definition (which might look different
from the usual decimal expansion e = 2.71828 . . . , but that one can check is the same using calculus and a
calculator):

Problem 12 Show that the number given by

e :=
1

0!
+

1

1!
+

1

2!
+

1

3!
+ . . .

is irrational. (Hint: Use a combination of the two techniques we’ve learned—first assume e = a/b, then look
at all terms after 1/b!.)

3 Continued Fraction Approximations

Definition 2 A continued fraction is a (possibly infinite) expression of the form

[a0; a1, a2, a3, . . . ] := a0 +
1

a1 +
1

a2 +
1

a3 +
. . .

Problem 13 Rewrite the following continued fractions as normal fractions (continued on next page).

• [1; 2]
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• [0; 1, 5]

• [3; 7, 16]

Problem 14 Rewrite the following rational numbers as continued fractions.

•
6

7

•
5

3

•
17

12

Problem 15 Show that a continued fraction represents a rational number if and only if it’s finite. (Hint:
The backwards direction is quick. For the forwards direction, give a way to turn any rational number into a
continued fraction, like in the previous problem.)

6



In general, the same algorithm as you have found in the previous problem finds the continued fraction
expression of any real number. To summarize,

1. Take the integer part of the number, which will be a0. Subtract a0 from the number.

2. Take the reciprocal of the resulting number.

3. The integer part of that reciprocal is a1, which we then subtract in a repeat of Step 1. Then repeat
Step 2, and so on.

Of course, by Problem 15 we should expect this algorithm to run infinitely if we start with an irrational
number. But decimal expansions could be infinite as well, and we could still describe them if they repeated
(say).

Problem 16 Using a calculator, find the first eight terms of the continued fraction expressions of the fol-
lowing real numbers. Do you see a pattern (not necessarily just a repeat) in any of them?

•
√
2

•
√
3

• 3
√
2

•
√
2 +

√
3

• e

• π

• L10 (Bonus: Think about what Lb’s continued fraction looks like in general.)
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Of course, since we can’t write down infinitely long expressions, all the infinite expressions we’ve written
down so far are estimates. For example, we can estimate π by writing down the first three (3.14), four (3.141),
or five (3.1415) digits in its decimal expansion. Some of these estimates are ”better” than the others, and
one way we can measure this is by finding the error.

Definition 3 Given a real number x and an estimate y for x, the absolute error of y is |x− y|.

Problem 17 Give the (absolute) error for the following decimal estimates of
√
2 in terms of

√
2: 1.4, 1.41, 1.414.

Of course, we can’t write down π−3.1415 any more than we can write down π itself, but as long as the error
of an estimate is small enough, its exact value often doesn’t matter.

Problem 18 Show that the (absolute) error in the ”take the first n digits of the decimal expansion” estimate
(for any real number) is at most 101−n.

Put differently, in the previous problem we showed that for the decimal approximation,

Error ≤ 1

Denominator

since the decimal approximation is essentially the same as writing the approximation as a fraction over 10n−1.
For instance, 3.14 = 314/100, and our error bound is about 1/100. However, using continued fractions, we
can do much better.

Problem 19 Check that the first four estimates given by the ”take the first n parts of the continued fraction
expansion” estimate for

√
2 satisfy

Error ≤ 1

Denominator2

(These estimates are the continued fractions [1], [1; 2], [1; 2, 2], [1; 2, 2, 2]. I encourage you to do this without
using the decimal expansion or a calculator, though it’s good to check your answers with those.)
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Problem 20 Compute the first few continued fraction expansions for π with a calculator. Which ones give
very small errors (compared to, say, their denominators squared)?

Problem 21 In general, where should you cut off a continued fraction to get the best estimate (in terms of
error)?

Problem 22 Find a continued fraction estimate for L10 that you think will give very small error. Try
estimating that error (or calculate it, if your calculator has enough significant digits).
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4 Repeating Continued Fractions and Quadratics

A couple of the continued fraction expansions we computed previously did repeat, much like a rational
number’s decimal expansion. For these continuous functions, we can solve for their exact value.

Problem 23 Find the value of [1; 1, 1, 1, . . . ]. (Hint: Let

x = 1 +
1

1 +
1

1 +
. . .

Find another x in this expression.)

Problem 24 Earlier, we calculated
√
2 = [1; 2, 2, 2, . . . ] and

√
3 = [1; 1, 2, 1, 2, . . . ] experimentally. Prove

these by showing that [2; 2, 2, 2, . . . ] =
√
2 + 1 and [0; 1, 2, 1, 2, . . . ] =

√
3− 1, respectively.

We see that repeating continued fraction expressions give quadratic equations, so that in particular we can
express numbers like square roots with repeating continued fractions. We give numbers like this a special
name.

Definition 4 A real number is quadratic if it is the root of a quadratic polynomial with rational coefficients.

Problem 25 Prove that a real number has a repeating continued fraction if and only if it is quadratic and
irrational.

We appear to have found some numbers that are not quadratic, but like with decimal expansions we run
into the difficulty of proving that an expression is infinite and non-repeating. We will not prove today that,
for example, 3

√
2 and e are not quadratic, but there is one example that is simple enough.

Problem 26 Show that the Liouville constants Lb are not quadratic. (Hint: Describe the base b expansions
for Lb and L2

b . When you plug them into the generic quadratic ax2 + bx+ c, why can you not get zero?)
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