Factorization

ORMC

03/31/24

1 GCD Review

The greatest common divisor of two integers m and n, gcd(m, n), is just that, the greatest positive integer that divides both of them.

Problem 1.1. Show that gcd(m, m + n) = gcd(m, n) and gcd(m, n - m) = gcd(m, n).

Problem 1.2. If m < n, what possibilities are there for gcd(m + n, n - m)?

Fact 1.3. If m, n, c are integers, then there are integers a, b such that am + bn = c if and only if gcd(m, n) divides c.

2 Problems from *Putnam and Beyond*

Problem 2.1. Show that for positive integers a and b, the product (36a + b)(a + 36b) cannot be a power of 2.

Problem 2.2. Prove that $1! \cdot 2! \cdots 100!$ is not a perfect square, but there is some $1 \le n \le 100$ such that the product skipping n!, that is, $1! \cdot 2! \cdots (n-1)! \cdot (n+1)! \cdots 100!$, is a perfect square.

Problem 2.3. Let n, a, b be positive integers. Prove that

$$gcd(n^a - 1, n^b - 1) = n^{gcd(a,b)} - 1.$$

3 Problems from Problem Solving Through Problems

Problem 3.1. Find the smallest positive integer *a* for which

$$1001x + 770y = 1,000,000 + a$$

is possible, and show that it has then 100 positive integer solutions.

Problem 3.2. Prove that any two successive Fibonacci numbers F_n, F_{n+1} with n > 2 are relatively prime.

4 Competition Problems

Problem 4.1 (2009 BAMO Problem 5). A set S of positive integers is called magic if for any two distinct members of S, i and j,

 $\frac{i+j}{\gcd(i,j)}$

is also a member of S. Find and describe all finite magic sets.

Problem 4.2 (2008 USAMO Problem 1). Prove that for each positive integer n, there are pairwise relatively prime integers k_0, k_1, \ldots, k_n , all strictly greater than 1, such that $k_0k_1 \cdots k_n - 1$ is the product of two consecutive integers.

Hint: Induction on *n*. If $k_0k_1 \dots k_n - 1$ is the product of two consecutive integers, find some $k_{n+1} > 1$ such that $k_0k_1 \dots k_{n+1} - 1$ is the product of two consecutive integers, with k_{n+1} relatively prime to k_0, \dots, k_n .

Problem 4.3 (2008 USAMO Problem 5). Three nonnegative real numbers r_1 , r_2 , r_3 are written on a blackboard. These numbers have the property that there exist integers a_1 , a_2 , a_3 , not all zero, satisfying $a_1r_1 + a_2r_2 + a_3r_3 = 0$. We are permitted to perform the following operation: find two numbers x, y on the blackboard with $x \leq y$, then erase y and write y - x in its place. Prove that after a finite number of such operations, we can end up with at least one 0 on the blackboard.

Hint: Along with each triple (r_1, r_2, r_3) , write a triple (a_1, a_2, a_3) to go with it. Track how the as change with the rs, and try to shrink $a_1^2 + a_2^2 + a_3^2$.

Problem 4.4 (2009 USAMO Problem 6). Let s_1, s_2, s_3, \ldots be an infinite, nonconstant sequence of rational numbers, meaning it is not the case that $s_1 = s_2 = s_3 = \cdots$. Suppose that t_1, t_2, t_3, \ldots is also an infinite, nonconstant sequence of rational numbers with the property that $(s_i - s_j)(t_i - t_j)$ is an integer for all i and j. Prove that there exists a rational number r such that $(s_i - s_j)r$ and $(t_i - t_j)/r$ are integers for all i and j.

Problem 4.5 (2018 Putnam A1). Find all ordered pairs (a, b) of positive integers for which

$$\frac{1}{a}+\frac{1}{b}=\frac{3}{2018}$$

Hint: Turn this into an integer equation, and consider both factorization and arithmetic mod 3.

Problem 4.6 (2015 Putnam A5). Let q be an odd positive integer, and let N_q denote the number of integers a such that 0 < a < q/4 and gcd(a,q) = 1. Show that N_q is odd if and only if q is of the form p^k with k a positive integer and p a prime congruent to 5 or 7 modulo 8.