Factorization

 ORMC03/31/24

1 GCD Review

The greatest common divisor of two integers m and $n, \operatorname{gcd}(m, n)$, is just that, the greatest positive integer that divides both of them.

Problem 1.1. Show that $\operatorname{gcd}(m, m+n)=\operatorname{gcd}(m, n)$ and $\operatorname{gcd}(m, n-m)=\operatorname{gcd}(m, n)$.
Problem 1.2. If $m<n$, what possibilities are there for $\operatorname{gcd}(m+n, n-m)$?
Fact 1.3. If m, n, c are integers, then there are integers a, b such that $a m+b n=c$ if and only if $\operatorname{gcd}(m, n)$ divides c.

2 Problems from Putnam and Beyond

Problem 2.1. Show that for positive integers a and b, the product $(36 a+b)(a+36 b)$ cannot be a power of 2 .

Problem 2.2. Prove that $1!\cdot 2!\cdots \cdots 100$! is not a perfect square, but there is some $1 \leq n \leq 100$ such that the product skipping $n!$, that is, $1!\cdot 2!\cdots \cdots(n-1)!\cdot(n+1)!\cdots \cdots 100$!, is a perfect square.

Problem 2.3. Let n, a, b be positive integers. Prove that

$$
\operatorname{gcd}\left(n^{a}-1, n^{b}-1\right)=n^{\operatorname{gcd}(a, b)}-1
$$

3 Problems from Problem Solving Through Problems

Problem 3.1. Find the smallest positive integer a for which

$$
1001 x+770 y=1,000,000+a
$$

is possible, and show that it has then 100 positive integer solutions.
Problem 3.2. Prove that any two successive Fibonacci numbers F_{n}, F_{n+1} with $n>2$ are relatively prime.

4 Competition Problems

Problem 4.1 (2009 BAMO Problem 5). A set S of positive integers is called magic if for any two distinct members of S, i and j,

$$
\frac{i+j}{\operatorname{gcd}(i, j)}
$$

is also a member of S. Find and describe all finite magic sets.

Problem 4.2 (2008 USAMO Problem 1). Prove that for each positive integer n, there are pairwise relatively prime integers $k_{0}, k_{1} \ldots, k_{n}$, all strictly greater than 1 , such that $k_{0} k_{1} \cdots k_{n}-1$ is the product of two consecutive integers.

Hint: Induction on n. If $k_{0} k_{1} \ldots k_{n}-1$ is the product of two consecutive integers, find some $k_{n+1}>1$ such that $k_{0} k_{1} \ldots k_{n+1}-1$ is the product of two consecutive integers, with k_{n+1} relatively prime to k_{0}, \ldots, k_{n}.
Problem 4.3 (2008 USAMO Problem 5). Three nonnegative real numbers r_{1}, r_{2}, r_{3} are written on a blackboard. These numbers have the property that there exist integers a_{1}, a_{2}, a_{3}, not all zero, satisfying $a_{1} r_{1}+a_{2} r_{2}+a_{3} r_{3}=0$. We are permitted to perform the following operation: find two numbers x, y on the blackboard with $x \leq y$, then erase y and write $y-x$ in its place. Prove that after a finite number of such operations, we can end up with at least one 0 on the blackboard.

Hint: Along with each triple $\left(r_{1}, r_{2}, r_{3}\right)$, write a triple $\left(a_{1}, a_{2}, a_{3}\right)$ to go with it. Track how the a shange with the $r \mathrm{~s}$, and try to shrink $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$.

Problem 4.4 (2009 USAMO Problem 6). Let $s_{1}, s_{2}, s_{3}, \ldots$ be an infinite, nonconstant sequence of rational numbers, meaning it is not the case that $s_{1}=s_{2}=s_{3}=\cdots$. Suppose that $t_{1}, t_{2}, t_{3}, \ldots$ is also an infinite, nonconstant sequence of rational numbers with the property that $\left(s_{i}-s_{j}\right)\left(t_{i}-t_{j}\right)$ is an integer for all i and j. Prove that there exists a rational number r such that $\left(s_{i}-s_{j}\right) r$ and $\left(t_{i}-t_{j}\right) / r$ are integers for all i and j.

Problem 4.5 (2018 Putnam A1). Find all ordered pairs (a, b) of positive integers for which

$$
\frac{1}{a}+\frac{1}{b}=\frac{3}{2018}
$$

Hint: Turn this into an integer equation, and consider both factorization and arithmetic mod 3 .
Problem 4.6 (2015 Putnam A5). Let q be an odd positive integer, and let N_{q} denote the number of integers a such that $0<a<q / 4$ and $\operatorname{gcd}(a, q)=1$. Show that N_{q} is odd if and only if q is of the form p^{k} with k a positive integer and p a prime congruent to 5 or 7 modulo 8 .

