Worksheet:

Throughout this worksheet all rings have 0 \neq 1.

A ring homomorphism \(f \) is a function between two rings \(f : R \to S \), satisfying the following properties:

- **addition preserving:** For all \(a, b \) in \(R \)
 \[f(a + b) = f(a) + f(b) \]

- **multiplication preserving:** For all \(a, b \) in \(R \)
 \[f(a \cdot b) = f(a) \cdot f(b) \]

- **unit preserving:**
 \[f(1_R) = 1_S \]

Problem 9.1: Show that the following functions are ring homomorphisms:

- \(f : \mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \), that sends an integer to its residue modulo 4.
- \(g : \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \), that sends a number to its residue modulo 2.
- \(h : \mathbb{R} \to \mathbb{C} \), defined by \(h(a) = a \) for all \(a \) in \(\mathbb{R} \).

Solution 9.1:
Problem 9.2: Show that for any ring homomorphism $f : R \to S$, we have that

$$f(0_R) = 0_S$$

Solution 9.2:
Problem 9.3: Show that a ring homomorphism $f : R \to S$ is one-to-one if and only if the preimage of 0_S is only 0_R, i.e. f is one-to-one if and only if $f(x) = 0_S$ implies $x = 0_R$.

Show that if $f : R \to S$ is a ring homomorphism and R is a field, then f is one-to-one.

Is this true when only S is a field?

Solution 9.3:
If a ring homomorphism $f : R \to S$ is furthermore a bijection, then we say f is an isomorphism.

Problem 9.4: Let $f : R \to S$ be an isomorphism, show that if R or S is a field, then both of them are fields.

Is this true for ring homomorphisms that are not isomorphisms?

Solution 9.4:
Problem 9.5: Show that the composition of two ring homomorphisms is a ring homomorphism.
Solution 9.5:
Let \(\mathbb{F} \) be a finite field.

Problem 9.6: Show that there are no ring homomorphisms \(f : \mathbb{R} \to \mathbb{F} \).

Solution 9.6:
Problem 9.7: Give sufficient and necessary conditions on m and n for the existence of a ring homomorphism:

$$f : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}.$$

How many such homomorphisms exist for each possible m, n?

Solution 9.7:
Problem 9.8: Describe all ring homomorphisms $f : \mathbb{Z}[x] \rightarrow \mathbb{Z}[x]$.

Solution 9.8:
Let p be a prime number.

Problem 9.9: How many ring homomorphisms of the form $f : \mathbb{F}_p \to \mathbb{F}_q$ exist?

Solution 9.9:
Problem 9.10: How many ring homomorphisms of the form $f: \mathbb{F}_4 \to \mathbb{F}_4$ are there?
How many ring homomorphisms of the form $f: \mathbb{F}_9 \to \mathbb{F}_9$ are there?

Solution 9.10: