Summing Binomial Coefficients

ORMC
03/10/24

1 Basic Binomial Sums

Problem 1.1. Find $\sum_{i=a}^{b}\binom{i}{2}$, using a telescoping sum.
Problem 1.2. Prove that

$$
\binom{n}{0}+\binom{n+1}{1}+\cdots+\binom{n+k}{k}=\binom{n+k+1}{k}
$$

2 Problems from "Problem Solving Through Problems"

Problem 2.1. Sum

$$
\sum_{j=0}^{n} \sum_{i=j}^{n}\binom{n}{i}\binom{i}{j}
$$

Problem 2.2. Show that

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}
$$

Problem 2.3. Use binomial sums to find a formula for $\sum_{k=0}^{n} k^{3}$.

3 Problems from "Putnam and Beyond"

Problem 3.1. Let F_{n} be the nth Fibonacci number, with $F_{1}=F_{2}=1$. Show that

$$
F_{1}\binom{n}{1}+F_{2}\binom{n}{2}+\cdots+F_{n}\binom{n}{n}=F_{2 n}
$$

Hint: You can use Binet's Formula:

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

Problem 3.2. Let a_{1}, a_{2}, \ldots be an arithmetic sequence - that is, there is some d such that for all $n, a_{n+1}=a_{n}+d$. Let $S_{n}=a_{1}+a_{2}+\cdots+a_{n}, n \geq 1$. Prove that

$$
\sum_{k=0}^{n}\binom{n}{k} a_{k+1}=\frac{2^{n}}{n+1} S_{n+1}
$$

4 Competition Problems

Problem 4.1 (2017 BAMO Problem 3). Consider the $n \times n$ "multiplication table" below. The numbers in the first column multiplied by the numbers in the first row give the remaining numbers in the table:

1	2	3	\cdots	n
2	4	6	\cdots	$2 n$
3	6	9	\cdots	$3 n$
\vdots	\vdots	\vdots	\ddots	\vdots
n	$2 n$	$3 n$	\cdots	n^{2}

We create a path from the upper-left square to the lower-right square by always moving one cell either to the right or down. For example, in the case $n=5$, here is one such possible path, with all the numbers along the path circled:

1	2	3	4	5
2	4	6	8	10
3	6	9	12	15
4	8	12	16	20
5	10	15	20	25

If we add up the circled numbers in the example above (including the start and end squares), we get 93 . Considering all such possible paths on the $n \times n$ grid:

- What is the smallest sum we can possibly get when we add up the numbers along such a path? Express your answer in terms of n, and prove that it is correct.
- What is the largest sum we can possibly get when we add up the numbers along such a path? Express your answer in terms of n, and prove that it is correct.

Problem 4.2 (2010 USAMO Problem 2). There are n students standing in a circle, one behind the other. The students have heights $h_{1}<h_{2}<\ldots<h_{n}$. If a student with height h_{k} is standing directly behind a student with height h_{k-2} or less, the two students are permitted to switch places. Prove that it is not possible to make more than $\binom{n}{3}$ such switches before reaching a position in which no further switches are possible.

Hint: Let s_{k} be the maximum number of times the student with height h_{k} can switch forward. How much higher is s_{k+1} than s_{k} ?

Problem 4.3 (2000 Putnam B5). Let S_{0} be a finite set of positive integers. We define finite sets S_{1}, S_{2}, \ldots of positive integers as follows. The integer a is in S_{n+1} if and only if exactly one of $a-1$ or a is in S_{n}. Show that there are infinitely many integers N for which

$$
S_{N}=S_{0} \cup\left\{N+a \mid a \in S_{0}\right\}
$$

Problem 4.4 (1992 Putnam B2). For nonnegative integers n and k, define $Q(n, k)$ to be the coefficient of x^{k} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$. Prove that

$$
Q(n, k)=\sum_{j=0}^{k}\binom{n}{j}\binom{n}{k-2 j},
$$

where $\binom{a}{b}$ is the standard binomial coefficient. (Reminder: For integers a and b with $a \geq 0$, $\binom{a}{b}=\frac{a!}{b!(a-b)!}$ for $0 \leq b \leq a$, with $\binom{a}{b}=0$ otherwise.)

Problem 4.5 (2003 Putnam B2). Let n be a positive integer. Starting with the sequence $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$, form a new sequence of $n-1$ entries $\frac{3}{4}, \frac{5}{12}, \ldots, \frac{2 n-1}{2 n(n-1)}$ by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of $n-2$ entries, and continue until the final sequence produced consists of a single number x_{n}. Show that $x_{n}<2 / n$.

