1 Team Round

1. Let N be a 6 -digit number formed by the digits $1,2,3,3,4,5$. Compute the smalelst value of N that is divisible by 264 .
2. In triangle $A B C, A B=4, B C=6$, and $A C=8$. Squares $A B Q R$ and $B C S T$ are drawn external to and lie in the same plane as $\triangle A B C$. Compute $Q T$.
3. The numbers $1,2, \ldots, 8$ are placed in a 3×3 square grid, leaving exactly one blank square. Such a placement is called okay if in every pair of adjacent squares, either one square is blank or the difference between the two numbers is at most 2 (two squares are considered adjacent if they share a common side). If reflections, rotations, etc. of placements are considered distinct, compute the number of distinct okay placements.
4. The six sides of convex hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ are colored red. Each of the diagonals of the hexagon is colored either red or blue. Compute the number of colorings such that every triangle $A_{i} A_{j} A_{k}$ has at least one red side.
5. Let $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7} A_{8}$ be a regular octagon. Let u be the vector from A_{1} to A_{2} and let v be the vector from A_{1} to A_{8}. The vector from A_{1} to A_{4} can be written as $a u+b v$ for a unique ordered pair of real numbers (a, b). Compute (a, b).
6. Given an arbitrary finite sequence of letters (represented as a word), a subsequence is a sequence of one or more letters that appear in the same order as in the original sequence. For example, $N, C T, O T$ T, and CONTEST are subsequences of the word CONTEST, but NOT, ONSET, and TESS are not. Assuming the standard English alphabet $\{A, B, \ldots, Z\}$, compute the number of distinct four-letter "words" for which $E E$ is a subsequence.
7. The function f satisfies the relation $f(n)=f(n-1) f(n-2)$ for all integers n, and $f(n)>0$ for all positive integers n. If $f(1)=\frac{f(2)}{512}$ and $\frac{1}{f(1)}=2 f(2)$, compute $f(f(4))$.
8. Compute the area of the region defined by $x^{2}+y^{2} \leq|x|+|y|$.
9. The equations $x^{3}+A x+10=0$ and $x^{3}+B x^{2}+50=0$ have two roots in common. Compute the product of these common roots.
10. Points A and L lie outside circle ω, whose center is O, and $\overline{A L}$ contains diameter $\overline{R M}$, as shown below. Circle ω is tangent to $\overline{L K}$ at K. Also, $\overline{A K}$ intersects ω at Y, which is between A and K. If $K L=3$, $M L=2$, and $m \angle A K L-m \angle Y M K=90^{\circ}$, compute $[A K M]$ (i.e., the area of $\triangle A K M$).

