2 Relay Round

1-1 Compute the number of ordered pairs (x, y) of positive integers satisfying $x^{2}-8 x+y^{2}+4 y=5$.

1-2 Let T be The Number You Will Receive (TNYWR). Let $k=21+2 T$. Compute the largest integer n such that $2 n^{2}-k n+77$ is a positive prime number.

1-3 Let T be The Number You Will Receive (TNYWR). In triangle $A B C, B C=T$ and $m \angle B=30^{\circ}$. Compute the number of integer values of $A C$ for which there are two possible values for side length $A B$.

2-1 The rational number r is the largest number less than 1 whose base- 7 expansion consists of two distinct repeating digist, $r=0 . A B A B A B \ldots$. Written as a reduced fraction, $r=\frac{p}{q}$. Compute $p+q$ (in base 10).

2-2 Let $T=T N Y W R$. Triangle $A B C$ has $A B=B C$. Points M and N lie on $\overline{B C}$ such that $\overline{A M}$ and $\overline{A N}$ trisect $\angle B A C$, with M closer to C. If $m \angle A M C=T^{\circ}$, then $m \angle A C B=U^{\circ}$. Compute U.

2-3 Let $T=T N Y W R$. At Wash College of Higher Education (Wash Ed.), the entering class has n students. Each day, two of these students are selected to oil the slide rules. If the entering class had two more students, there would be T more ways of selecting the two slide rule oilers. Compute n.

