# Catalan Numbers and Related Combinatorics

### ORMC

#### 03/03/24

## 1 Path Counting and Catalan Numbers

**Problem 1.1.** On a square lattice, how many paths are there that stick to integer points, moving only 1 lattice point at a time, only go up and to the right, never down or left, and go from (0,0) to (m,n)?

**Problem 1.2.** How many lattice paths are there, going from (0,0) to (n,n), going right and up without ever going above the line x = y?

Here are the valid paths illustrated for n = 4.



### 2 Posets

**Problem 2.1** (From Igor Pak's Class). For posets  $P = (X, \preceq)$  and  $Q = (Y, \preceq')$  define the sum P + Q and the product  $P \cdot Q$  on the same set  $X \cup Y$ , as in the figure. Define also a 4-element poset Z as in the figure. Prove that a poset A does not contain Z as an induced subposet (meaning it has no additional relations), if and only if A can be obtained from a single-element poset using the sum and product operations. We call these posets *nice*.



**Problem 2.2** (From Igor Pak's Class). Use the previous problem to prove that the number of non-isomorphic posets on n elements which have no induced Z and J as in the figure, is the Catalan number  $C_n$ .

### 3 Competition Problems

**Problem 3.1** (1996 USAMO Problem 4). An *n*-term sequence  $(x_1, x_2, \ldots, x_n)$  in which each term is either 0 or 1 is called a binary sequence of length *n*. Let  $a_n$  be the number of binary sequences of length *n* containing no three consecutive terms equal to 0, 1, 0 in that order. Let  $b_n$  be the number of binary sequences of length *n* that contain no four consecutive terms equal to 0, 0, 1, 1 or 1, 1, 0, 0 in that order. Prove that  $b_{n+1} = 2a_n$  for all positive integers *n*.

**Problem 3.2** (2003 Putnam A5). A Dyck *n*-path is a lattice path of *n* upsteps (1, 1) and *n* downsteps (1, -1) that starts at the origin *O* and never dips below the *x*-axis. A return is a maximal sequence of contiguous downsteps that terminates on the *x*-axis. For example, the Dyck 5-path illustrated has two returns, of length 3 and 1 respectively.



Show that there is a one-to-one correspondence between the Dyck *n*-paths with no return of even length and the Dyck (n-1)-paths.

**Problem 3.3** (2005 Putnam A2). Let  $\mathbf{S} = \{(a, b) | a = 1, 2, ..., n, b = 1, 2, 3\}$ . A rook tour of  $\mathbf{S}$  is a polygonal path made up of line segments connecting points  $p_1, p_2, ..., p_{3n}$  in sequence such that

- (i)  $p_i \in \mathbf{S}$ ,
- (ii)  $p_i$  and  $p_{i+1}$  are a unit distance apart, for  $1 \le i < 3n$ ,
- (iii) for each  $p \in \mathbf{S}$  there is a unique *i* such that  $p_i = p$ . How many rook tours are there that begin at (1,1) and end at (n,1)?