Catalan Numbers and Related Combinatorics

ORMC

03/03/24

1 Path Counting and Catalan Numbers

Problem 1.1. On a square lattice, how many paths are there that stick to integer points, moving only 1 lattice point at a time, only go up and to the right, never down or left, and go from $(0,0)$ to (m, n) ?

Problem 1.2. How many lattice paths are there, going from $(0,0)$ to (n, n), going right and up without ever going above the line $x=y$?

Here are the valid paths illustrated for $n=4$.

2 Posets

Problem 2.1 (From Igor Pak's Class). For posets $P=(X, \preceq)$ and $Q=\left(Y, \preceq^{\prime}\right)$ define the sum $P+Q$ and the product $P \cdot Q$ on the same set $X \cup Y$, as in the figure. Define also a 4 -element poset Z as in the figure. Prove that a poset A does not contain Z as an induced subposet (meaning it has no additional relations), if and only if A can be obtained from a single-element poset using the sum and product operations. We call these posets nice.

Problem 2.2 (From Igor Pak's Class). Use the previous problem to prove that the number of non-isomorphic posets on n elements which have no induced Z and J as in the figure, is the Catalan number C_{n}.

3 Competition Problems

Problem 3.1 (1996 USAMO Problem 4). An n-term sequence $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in which each term is either 0 or 1 is called a binary sequence of length n. Let a_{n} be the number of binary sequences of length n containing no three consecutive terms equal to $0,1,0$ in that order. Let b_{n} be the number of binary sequences of length n that contain no four consecutive terms equal to $0,0,1,1$ or $1,1,0$, 0 in that order. Prove that $b_{n+1}=2 a_{n}$ for all positive integers n.

Problem 3.2 (2003 Putnam A5). A Dyck n-path is a lattice path of n upsteps $(1,1)$ and n downsteps $(1,-1)$ that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck $(n-1)$-paths.

Problem 3.3 (2005 Putnam A2). Let $\mathbf{S}=\{(a, b) \mid a=1,2, \ldots, n, b=1,2,3\}$. A rook tour of \mathbf{S} is a polygonal path made up of line segments connecting points $p_{1}, p_{2}, \ldots, p_{3 n}$ in sequence such that
(i) $p_{i} \in \mathbf{S}$,
(ii) p_{i} and p_{i+1} are a unit distance apart, for $1 \leq i<3 n$,
(iii) for each $p \in \mathbf{S}$ there is a unique i such that $p_{i}=p$. How many rook tours are there that begin at $(1,1)$ and end at $(n, 1)$?

