OLGA RADKO MATH CIRCLE: ADVANCED 3

JOSHUA ENWRIGHT, FERNANDO FIGUEROA, JOAQUÍN MORAGA, AND SAM QUNELL

Winter Final Exam II

Name: _____

Problem 1	/10
Problem 2	/10
Problem 3	/10
Problem 4	/10
Total	/40

Let V be a vector space over the field \mathbb{F} . We say that a set $S \subseteq V$ is *linearly independent* over \mathbb{F} if, whenever $a_1s_1 + \ldots + a_ns_n = 0$ for some scalars a_i in \mathbb{F} , we must have all $a_i = 0$.

Problem II.1:

(1) Consider $V = \mathbb{C}$ and $\mathbb{F} = \mathbb{R}$. Is the set $S = \{1, i\}$ linearly independent over \mathbb{R} ? (2) Consider $V = \mathbb{C}$ and $\mathbb{F} = \mathbb{C}$. Is the set $S = \{1, i\}$ linearly independent over \mathbb{C} ?

Consider the vector space $V = \mathbb{A}^2_{\mathbb{F}_3}$ over the field \mathbb{F}_3 . Consider (1, 2) in V. **Problem II.2:**

Find, with a proof, a vector v in V such that the set $\{(1,2), v\}$ is a basis for V over \mathbb{F}_3 .

For this problem you may use without proof that a set S is a basis if and only if it is a generating set and it is linearly independent.

Consider $V = \mathbb{A}^3_{\mathbb{F}_3}$ over the field \mathbb{F}_3 . **Problem II.3:**

- (1) What is the largest size of a set $S \subseteq V$, such that any two elements of S are linearly independent? (2) What is the largest size of a set $S \subseteq V$, such that any three elements of S are linearly independent?
- (3) What is the largest size of a linearly independent set $S \subseteq V$?

Problem II.4:

- (1) In how many points can two lines intersect in $\mathbb{A}^2_{\mathbb{F}_q}$? (2) In how many points can two hyperplanes intersect in $\mathbb{A}^n_{\mathbb{F}_q}$? (3) In how many points can three hyperplanes intersect in $\mathbb{A}^n_{\mathbb{F}_q}$?

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA.

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA. *Email address:* fzamora@math.princeton.edu

UCLA MATHEMATICS DEPARTMENT, BOX 951555, LOS ANGELES, CA 90095-1555, USA. $Email\ address:\ jmoraga@math.ucla.edu$

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA.