OLGA RADKO MATH CIRCLE: ADVANCED 3

JOSHUA ENWRIGHT, FERNANDO FIGUEROA, JOAQUÍN MORAGA, AND SAM QUNELL

Winter Final Exam I

Name: _____

Problem 1	/10
Problem 2	/10
Problem 3	/10
Problem 4	/10
Total	/40

Let $\mathbb{P}^2_{\mathbb{F}_3}$ be the projective plane over \mathbb{F}_3 . Problem I.1 :

(1) Which of the following coordinates represent the same point in $\mathbb{P}^2_{\mathbb{F}_3}$:

 $\{[1:1:1], [1:1:2], [1:2:1], [1:2:2], [2:1:1], [2:1:2], [2:2:1], [2:2:2]\}$ (2) List all the points in $\mathbb{P}^3_{\mathbb{F}_3}$.

Inside a field \mathbb{F} , an element *a* is called a square if there exists some *x* in \mathbb{F} such that $a = x^2$. **Problem I.2:**

(1) Show that any element in \mathbb{F}_7 is the sum of two squares.

(2) Show that for any prime number p, any element in \mathbb{F}_p is the sum of two squares.

(3) Is any element in \mathbb{F}_q a sum of two squares?

Remark: Remember that q may not be a prime number.

In a field any nonzero element has a multiplicative inverse, therefore we can define division by nonzero elements. **Problem I.3:**

Consider the expression:

$$f(\alpha) = \frac{\alpha - 2}{\alpha^2 - 5\alpha - 1}$$

(1) What possible values can $f(\alpha)$ have when α takes values in \mathbb{F}_7 different from 2 and 3.

(2) What possible values can $f(\alpha)$ have when α takes values in \mathbb{F}_{49} different from 2 and 3.

(3) What possible values can $f(\alpha)$ have when α takes values in \mathbb{F}_{7^k} different from 2 and 3.

For any prime p, any integer x yields an element of \mathbb{F}_p , this can be done by taking the remainder after dividing x by p.

Problem I.4:

- (1) Show that any point of P²_{𝔅3} can be written as [x : y² : z³], where x, y, z are integers.
 (2) Show that some points of P³_{𝔅3} cannot be written as [x : y² : z³ : w⁴], where x, y, z, w are integers.
 (3) Show that for any odd prime number p, some points of P³_{𝔅p} cannot be written as [x : y² : z³ : w⁴], where x, y, z, w are integers.

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA.

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA. *Email address:* fzamora@math.princeton.edu

UCLA MATHEMATICS DEPARTMENT, BOX 951555, LOS ANGELES, CA 90095-1555, USA. $Email\ address:\ jmoraga@math.ucla.edu$

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA.