OLGA RADKO MATH CIRCLE: ADVANCED 3

JOSHUA ENWRIGHT, FERNANDO FIGUEROA, JOAQUÍN MORAGA, AND SAM QUNELL

Winter Final Exam I

Name:

Problem 1	$/ 10$
Problem 2	$/ 10$
Problem 3	$/ 10$
Problem 4	$/ 10$
Total	$/ 40$

Let $\mathbb{P}_{\mathbb{F}_{3}}^{2}$ be the projective plane over \mathbb{F}_{3}. Problem I. 1 :
(1) Which of the following coordinates represent the same point in $\mathbb{P}_{\mathbb{F}_{3}}^{2}$:

$$
\{[1: 1: 1],[1: 1: 2],[1: 2: 1],[1: 2: 2],[2: 1: 1],[2: 1: 2],[2: 2: 1],[2: 2: 2]\}
$$

(2) List all the points in $\mathbb{P}_{\mathbb{F}_{3}}^{3}$.

Solution:

Inside a field \mathbb{F}, an element a is called a square if there exists some x in \mathbb{F} such that $a=x^{2}$. Problem I.2:
(1) Show that any element in \mathbb{F}_{7} is the sum of two squares.
(2) Show that for any prime number p, any element in \mathbb{F}_{p} is the sum of two squares.
(3) Is any element in \mathbb{F}_{q} a sum of two squares?

Remark: Remember that q may not be a prime number.

Solution:

In a field any nonzero element has a multiplicative inverse, therefore we can define division by nonzero elements. Problem I.3:

Consider the expression:

$$
f(\alpha)=\frac{\alpha-2}{\alpha^{2}-5 \alpha-1}
$$

(1) What possible values can $f(\alpha)$ have when α takes values in \mathbb{F}_{7} different from 2 and 3.
(2) What possible values can $f(\alpha)$ have when α takes values in \mathbb{F}_{49} different from 2 and 3.
(3) What possible values can $f(\alpha)$ have when α takes values in $\mathbb{F}_{7^{k}}$ different from 2 and 3.

Solution:

For any prime p, any integer x yields an element of \mathbb{F}_{p}, this can be done by taking the remainder after dividing x by p.
Problem I.4:
(1) Show that any point of $\mathbb{P}_{\mathbb{F}_{3}}^{2}$ can be written as $\left[x: y^{2}: z^{3}\right]$, where x, y, z are integers.
(2) Show that some points of $\mathbb{P}_{\mathbb{F}_{3}}^{3}$ cannot be written as $\left[x: y^{2}: z^{3}: w^{4}\right]$, where x, y, z, w are integers.
(3) Show that for any odd prime number p, some points of $\mathbb{P}_{\mathbb{F}_{p}}^{3}$ cannot be written as $\left[x: y^{2}: z^{3}: w^{4}\right]$, where x, y, z, w are integers.

Solution:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu
UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.

