Vectors and Physics 1

Problem 4 Solution
How to divide a segment into parts
How to divide a segment $A B$ into three parts:

1. Mark an additional segment $A C$ with any length.

2. Extend $A C$ to create segments $C D$ and $D E$ with the same length. To find point D , draw a circle centered at point C with radius $|A C|$. Repeat with a circle around D to find E .

3. Mark line $B E$.

4. Mark line $C F$ and $G D$ so that they are parallel to $B E$.

$A F, F G$, and $G B$ are each one-third of the length of $A B$.

This construction is extremely useful, as it allows us to divide a segment into any number of equal parts.

Proposition $1 \quad|A F|=|F G|=|G B|$

Proof - Draw straight lines $C H$ and $D I$ parallel to $A B$.

Claim	Reason
$1 .\|A C\|=\|C D\|=\|D E\|$	By construction: These line segments were drawn to be the same length..

Claim	Reason		
2. $\angle F A C \cong \angle H C D \cong \angle I D E$	Proposition 2 from the 2/18/24 Packet, Intro to Geometry Parallel Lines These are corresponding angles, since $A F\\|C H\\| D I$.		
3. $\angle F C A \cong \angle H D C \cong \angle I E D$	Proposition 2 from the 2/18/24 Packet, Intro to Geometry Parallel Lines These are corresponding angles, since $C F\\|D H\\| E I$.		
4. $\triangle A C F \cong \triangle C D H \cong \triangle D E I$	Theorem 1 from the 1/14/2024 Packet, Intro to Geometry Angles, Triangles, and Congruence These triangles are congruent by ASA, as they share a congruent Angle, Side, and Angle (in that order). We proved that these were congruent in claim 2 (Angle), 1 (Side), and 3 (Angle).		
5. $\|A F\|=\|C H\|=\|D I\|$	$\triangle A C F \cong \triangle C D H \cong \triangle D E I$ Corresponding sides of congruent triangles are congruent. These sides are the same side from three congruent triangles.		

Claim	Reason		
6. $C H G F$ and $D I B G$ are parallelograms.	By definition of parallelograms: Because $F G \\| C H$ and $F C\|\mid G H$, $C H G F$ is a parallelogram.		
	Because $G B \\| D I$ and $G D \\| B I$, $D I B G$ is a parallelogram.		
$7 .\|C H\|=\|F G\|$	Opposite sides of parallelograms are congruent.		
$\|D I\|=\|G B\|$	$C H G F$ and $D I B G$ are both parallelograms.		
$8 .\|A F\|=\|F G\|=\|G B\|$	From claim 1, we know that $\|A F\|=\|C H\|=\|D I\|$.		
Using claim 7, we can substitute $\|C H\|$ with $\|F G\|$ and $\|D I\|$ with $\|G B\|$.			

Therefore, the three segments $A F, F G$, and $G B$ are congruent, so we have proved Proposition 1.
Q.E.D. (The proof is complete.)

Note that this proof can be repeated to divide a segment into any integer number of pieces using only a compass and straight edge.

