ORMC Beginners 2

Winter 2024

Vectors and Physics 1 Problem 4 Solution How to divide a segment into parts

How to divide a segment AB into three parts:

1. Mark an additional segment AC with any length.

2. Extend AC to create segments CD and DE with the same length. To find point D, draw a circle centered at point C with radius |AC|. Repeat with a circle around D to find E.

3. Mark line BE.

4. Mark line CF and GD so that they are parallel to BE.

AF, FG, and GB are each one-third of the length of AB.

This construction is extremely useful, as it allows us to divide a segment into any number of equal parts.

Proposition 1 |AF| = |FG| = |GB|

Proof — Draw straight lines CH and DI parallel to AB.

Claim	Reason
1. $ AC = CD = DE $	By construction:
	These line segments were drawn to be the same length.

Claim	Reason
2. $\angle FAC \cong \angle HCD \cong \angle IDE$	Proposition 2 from the 2/18/24 Packet, Intro to Geometry - Parallel Lines
	These are corresponding angles, since $AF \parallel CH \parallel DI$.
3. $\angle FCA \cong \angle HDC \cong \angle IED$	Proposition 2 from the 2/18/24 Packet, Intro to Geometry - Parallel Lines
	These are corresponding angles, since $CF \parallel DH \parallel EI$.
$4. \ \triangle ACF \cong \triangle CDH \cong \triangle DEI$	Theorem 1 from the 1/14/2024 Packet, Intro to Geometry - Angles, Triangles, and Congruence
	These triangles are congruent by ASA , as they share a congruent A ngle, S ide, and A ngle (in that order). We proved that these were congruent in claim 2 (A ngle), 1 (S ide), and 3 (A ngle).
5. $ AF = CH = DI $	$\triangle ACF \cong \triangle CDH \cong \triangle DEI$ Corresponding sides of congruent triangles are congruent.
	These sides are the same side from three congruent triangles.

Claim	Reason
6. <i>CHGF</i> and <i>DIBG</i> are parallelograms.	By definition of parallelograms: Because $FG CH$ and $FC GH$, CHGF is a parallelogram. Because $GB DI$ and $GD BI$, DIBG is a parallelogram.
7. $ CH = FG $ DI = GB	Opposite sides of parallelograms are congruent. CHGF and DIBG are both parallelograms.
8. $ AF = FG = GB $	From claim 1, we know that AF = CH = DI . Using claim 7, we can substitute CH with $ FG $ and $ DI $ with $ GB .$

Therefore, the three segments AF, FG, and GB are congruent, so we have proved Proposition 1.

Q.E.D. (The proof is complete.)

Note that this proof can be repeated to divide a segment into any integer number of pieces using only a compass and straight edge.