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Game Theory

1 Warm-Up

Problem 1.1. Two players take turns putting round chips of the
same size on a round table. Originally, the table is empty. The
chips are not allowed to overlap or to stick outside of the table.
The first player who is unable to make a move loses. If both
players play optimally, who will win this game? Find a winning
strategy.

Problem 1.2. A crew of pirates has the following hierarchy:

A > B > C > D > E > F > G > H > I > J

A is the captain, B is the second in the hierarchy, and so forth.
They have to split 1,000 gold coins, all of the same value, be-
tween the crew members. The way they share booty works as
follows: the captain proposes a division scheme and then the pi-
rates vote. It the majority votes for the scheme or if there is a
draw, the scheme goes ahead. If the majority votes against the
scheme, they kill the captain, the next in the hierarchy becomes
the new captain, and the algorithm goes for the next run. All

1



the pirates are infinitely smart and infinitely ruthless. They to-
tally distrust one another, so they cannot form alliances, trust
promises, etc. “Infinitely ruthless” means the following: if a pi-
rate has to choose between the situation that (1) he gets some
number of coins and the current captain stays alive; and (2) he
gets the same number of coins as in (1), but the captain is killed;
the pirate will choose (2). What is the maximal number of coins
the captain can keep to herself and stay alive?

Problem 1.3. Consider the same same situation, but this time
the pirates are kind-hearted by nature; they are pirates by neces-
sity, not choice. Being infinitely rational, they totally distrust
one another, so they cannot form alliances, trust promises, etc.
“Kind-hearted” means the following: if a pirate has to choose
between the situation that (1) he gets some number of coins and
the current captain stays alive; and (2) he gets the same num-
ber of coins as in (1), but the captain is killed; the pirate would
choose (1).
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2 What is Game Theory?

Welcome to an exploration of Game Theory, a fascinating field
that lies at the intersection of mathematics, economics, and psy-
chology. Game Theory is the study of strategic decision-making,
where the outcome of your choices depends not only on what you
decide but also on the decisions of others. It’s not limited to tra-
ditional“games” but applies to a wide range of competitive and
cooperative situations—from sports and politics to negotiations
and everyday choices. First, let’s define what we really mean by
a “game”.

We say a game has the following properties:

1. There are at least two players (individuals, companies, na-
tions, animals, . . . ).

2. Each player has a number of possible strategies, which they
may choose to follow.

3. The strategies chosen by each player determine the outcome
of the game.

4. Associated to each possible outcome of the game is a col-
lection of numerical payoffs, one to each player (each payoff
represents the value of the outcome to the player).

A couple of things to keep in mind:

• Game Theory is the study of how players should rationally
play games. This means that each player tries to maximize
their own payoff, regardless of what the other person’s pay-
off is.
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• Each player has some control over the outcomes, since their
choices will influence it.

• Games are not restricted to the typical ones, such as chess
or poker (although both are great examples) they extend
to:

– Companies pursuing corporate strategies.

– Political candidates trying to win an election.

– Nations maneuvering in the international arena.

– Auctions (of which there are several types).

– Matrix games (pure, mixed).

For now, we only consider pure games, or games where players
must choose an action deterministically. We will explore mixed
games, or games where the player is allowed to randomize their
action, in a future section.

Example 1 (Prisoner’s Dilemma). The prisoner’s dilemma is
a classic game theory problem. The situation is as follows: you
and your partner were arrested for a crime and are now being
questioned, separately, about a more serious crime that you are
suspected to have committed. Each of you can either stay silent
or confess to the larger crime. If both of you stay silent, each
of you gets a year in prison for the smaller crime. If both of
you confess, each of you gets 5 years in prison for the serious
crime. If, however, you confess and your partner stays silent,
you are set free immediately and your partner gets 10 years in
prison. Similarly, if you stay silent but your partner confesses,
you are sentenced to 10 years in prison while your partner is
set free immediately. Would you confess or stay silent? Would
your action depend on what your partner does?
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The payoffs of a two-player game can be represented by a bi-
matrix, where each element of the matrix is a 2-tuple repre-
senting the payoff to each player. This is known as the payoff
matrix of the game. Let’s see what the payoff matrix of the
prisoner’s dilemma looks like:

Actions Silent Confess

Silent (-1, -1) (-10, 0)

Confess (0, -10) (-5, -5)

We read the table as follows: Player 1 (you) chooses a row action,
and Player 2 (your partner) chooses a column action. Then,
given the row and column in the payoff matrix, Player 1’s payoff
is the first element of the tuple, and Player 2’s payoff is the
second. Now, let’s figure out our best strategy to the prisoner’s
dilemma:

1. If our partner stays silent:

(a) If we stay silent too, the payoff matrix entry is (-1, -1),
so our payoff is -1.

(b) If we confess, the payoff matrix entry is (0, -10), so our
payoff is 0.

So, if we know our partner is going to stay silent, we should
confess and get out scot-free! (Remember that we are self-
ish criminals and don’t care about our partner’s suffering.
After all, there is no honor among thieves!)

2. If our partner confesses:
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(a) If we stay silent, the payoff matrix entry is (-10, 0), so
our payoff is -10.

(b) If we confess too, the payoff matrix entry is (-5, -5), so
our payoff is -5.

So, if we know our partner is going to confess, we might
as well confess too and minimize our inevitable prison sen-
tence!

Notice that regardless of our partner’s action, our best strategy
is to always confess! This is called a dominant strategy, as
it is our best course of action regardless of the other player’s
action. Since confessing is also the dominant strategy for our
partner, we will both end up confessing and getting 5 years in
prison, even though we could have both stayed silent and gotten
away with a 1 year sentence.

Problem 2.1. United Airlines (Player 1) and American Air-
lines (Player 2) are deciding what fare to set for a one-way
ticket from Los Angeles to New York. Based on some market
research, they both know the following payoff matrix for their
profit (in millions of dollars). Figure out the dominant strategy
for each of the airlines, and what their final profits will end up
being.

Fares $500 $200

$500 (50, 100) (-100, 200)

$200 (150, -200) (-10, -10)
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3 Nash Equilibria

Notice that, in both of the previous games, both players could
have ended up with better payoffs if they could mutually agree
to play different strategies. However, since they are unable to
collude, they choose the strategy that suits them best regardless
of the other player’s action. A Nash equilibrium (named after
mathematician John Nash), is a situation where, given all the
current strategies of the other players, a player has no incentive
to deviate from their current strategy.

Problem 3.1. Find the (pure) Nash equilibrium to the following
game:

Strategy L C R

T (1, 0) (1, 3) (3, 0)

M (0, 2) (0, 1) (3, 0)

B (0, 2) (2, 4) (5, 3)

Problem 3.2. Is it possible for a game to have more than one
(pure) Nash equilibrium? If so, construct such a game. If not,
justify why not.
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Problem 3.3. Is it possible for a game to have no (pure) Nash
equilibrium? If so, construct such a game. If not, justify why
not.

A zero-sum game is a matrix game where the payoffs for each
possible outcome sum to 0.

Problem 3.4. Consider the following payoff matrix. Verify that
the game is indeed zero-sum.

Strategy D E F

A (-1, 1) (0, 0) (2, -2)

B (3, -3) (1, -1) (1, -1)

C (0, 0) (1, -1) (2, -2)

A saddle point of a 2 player zero-sum game is defined to be
an outcome where the payoff of Player 1 is maximized along its
column but minimized along its row.

Problem 3.5. Give an analogous definition of a saddle point in
terms of Player 2’s payoffs.
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Problem 3.6. Find the saddle point of the previous matrix
game. Verify that it is also a Nash equilibrium.

Theorem 1. The saddle points of a 2 player zero-sum game are
exactly its pure Nash equilibria.

Problem 3.7. Prove Theorem 1.

Problem 3.8. Find the (pure) Nash equilibria of the following
zero-sum game by finding its saddle points.

Strategy D E F G

A (-4, 4) (0, 0) (3, -3) (4, -4)

B (-6, 6) (1, -1) (2, -2) (3, -3)

C (-3, 3) (0, 0) (-1, 1) (-2, 2)
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4 Mixed Strategies

Action L R

T (0, 3) (3, 0)

B (2, 1) (1, 2)

Consider a game with many rounds, where each round has the
above payoff matrix. Notice that neither player has a dominant
strategy. How should Player 1 approach this game? Should they
pick action T in every round and just hope Player 2 picks action
R? Should they alternate actions every round, starting with B
and then switching every time? What are the downsides of these
approaches?

In the absence of a dominant strategy, the issue with Player
1 making a predictable choice in strategies is that Player 2 can
learn and react to these choices. If Player 2 knows for certain
that Player 1 will pick action T or B in any round, they will pick
action L or R, respectively, which will always minimize Player
1’s payoff (either 0 or 1). Therefore, as Player 1, we want to
introduce some element of chance into our strategy.

For a player in a game with a choice of n actions, we define
a mixed strategy as a probability distribution amongst the
possible actions, S = (p1, p2, . . . , pn), where each pi represents
the probability of choosing action i. For it to be a valid proba-
bility distribution, we require 0 ≤ pi ≤ 1 for all actions i, and
p1+p2+ · · ·+pn = 1. If for any action i, pi = 1, this is known as
a pure strategy. Let’s see why one might use a mixed strategy.
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Problem 4.1. Again, consider the game with many rounds,
where each round has the below payoff matrix. Suppose that
Player 1 plays the mixed strategy S1 = (0.1, 0.9) in every round,
and Player 2 knows this. What will Player 2’s optimal strategy
be? What will Player 1’s expected payoff per round be in this
case?

Action L R

T (0, 3) (3, 0)

B (2, 1) (1, 2)

Notice that, by using a mixed strategy, Player 1’s expected pay-
off is more than if they picked either action predictably! In
this vein, both players will want to employ mixed strategies to
maximize their expected payoff.

Problem 4.2. Again, consider the game with the above pay-
off matrix. Suppose Player 1 uses mixed strategy S1 = (p1, p2)
and Player 2 uses mixed strategy S2 = (q1, q2). What is the ex-
pected payoff of each player? Your answer should be in terms of
p1, p2, q1, q2.
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Now the question arises: what is the optimal mixed strategy for
Player 1, given that Player 2 will know their strategy? The idea
is to choose a mixed strategy that maximizes expected payoff
no matter what Player 2’s action is.

Problem 4.3. Again, consider the game with the below payoff
matrix. Suppose Player 1 uses mixed strategy S1 = (p1, p2).
What is Player 1’s payoff when Player 2 uses strategy S2 =
(1, 0)? What about when Player 2 uses strategy S ′

2 = (0, 1)?
Find the values of p1 and p2 that maximize the minimum of these
two payoffs. (Hint: think about when the payoffs are equal)

Action L R

T (0, 3) (3, 0)

B (2, 1) (1, 2)

A mixed Nash equilibrium is a situation when no player can
improve the expected payoff of their mixed strategy, given that
the other players’ mixed strategies are fixed.

Theorem 2 (Nash’s Theorem). Every game with a finite num-
ber of players and a finite number of actions for each player has
a mixed Nash equilibrium.

The proof of this (perhaps surprising) theorem is beyond our
scope.
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Problem 4.4. Find the mixed Nash equilibrium of the below
payoff matrix. What is the expected payoff for each player?
(Hint: you have already found Player 1’s optimal mixed strategy)

Action L R

T (0, 3) (3, 0)

B (2, 1) (1, 2)

Problem 4.5. Find the mixed Nash equilibrium of rock, paper,
scissors, given the following payoff matrix. What is the expected
payoff for each player?

Action Rock Paper Scissors

Rock (0, 0) (-1, 1) (1, -1)

Paper (1, -1) (0, 0) (-1, 1)

Scissors (-1, 1) (1, -1) (0, 0)
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Problem 4.6. Consider the game of chicken, where two players
drive speedily toward each other, and each player either swerves
or continues driving straight. If one player swerves and the other
doesn’t, the player who continued to drive straight wins while the
other is labelled “chicken”. If both players swerve, it is consid-
ered a tie. If neither player swerves, it is also considered a tie,
except both players end up in a car crash and suffer from injuries
(and sky high medical bills). Consider the following payoff ma-
trix for chicken.

Action Swerve Drive Straight

Swerve (0, 0) (-1, 1)

Drive Straight (1, -1) (-4, -4)

Find the Nash equilibria. (Hint: look for both pure and mixed)
What are the players’ expected payoffs in each case?
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Problem 4.7. Find all the Nash equilibria to the game with the
following payoff matrix. (Hint: there are more than you can
count)

Action L R

T (3, -3) (0, 0)

M (0, 0) (3, -3)

B (2, -2) (2, -2)

Problem 4.8 (Challenge). Think back to Nash’s Theorem. Why
do we need the assumption that each player has a finite number
of actions? Construct an infinite 2 player game without any
Nash equilibria (pure or mixed).

15


	Warm-Up
	What is Game Theory?
	Nash Equilibria
	Mixed Strategies

