OLGA RADKO MATH CIRCLE, WINTER 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet :

Throughout this worksheet $\mathbb F$ is a field.

A vector space over a field \mathbb{F} , is given by a set V and two operations:

(1) vector addition (+): an operation between two elements in V.

(2) Scalar multiplication (·): An operation between an element of \mathbb{F} and an element of V.

- Satisfying the following properties, for any u, v, w in V and α, β in \mathbb{F} :
- (1) Associativity: u + (v + w) = (u + v) + w
- (2) Commutativity: u + v = v + u
- (3) Identity element: There exists an element 0_V in V, such that $u + 0_V = u$
- (4) Inverse element: There exists an element -u in V, such that $(-u) + u = 0_V$
- (5) Compatibility of scalar multiplication and field multiplication: $(\alpha\beta)u = \alpha(\beta u)$
- (6) Identity element of scalar multiplication: 1v = v
- (7) Distributivity of scalar multiplication with respect to vector addition: $\alpha(u+v) = \alpha u + \alpha v$
- (8) Distributivity of scalar multiplication with respect to field addition: $(\alpha + \beta)v = \alpha v + \beta v$

Remember that \mathbb{F}^n is also called the *affine space* $\mathbb{A}^n_{\mathbb{F}}$. We will label the coordinates in affine space $\mathbb{A}^n_{\mathbb{F}}$:

 $(x_1, x_2, \ldots, x_n).$

There are two operations that can be performed with points in affine space:

• Multiplication by scalars: If $c \in \mathbb{F}$ and $v = (x_1, x_2, \dots, x_n) \in \mathbb{A}^n_{\mathbb{F}}$, the scalar multiplication is defined as

$$cv := (cx_1, cx_2, \dots, cx_n).$$

• Addition of points: If $v = (x_1, x_2, \dots, x_n) \in \mathbb{A}^n_{\mathbb{F}}$ and $w = (y_1, y_2, \dots, y_n) \in \mathbb{A}^n_{\mathbb{F}}$, the addition is defined as $v + w := (x_1 + y_1, \dots, x_n + y_n).$

Problem 7.1:

Show that $\mathbb{A}^n_{\mathbb{F}}$ is a vector space over \mathbb{F} . Solution 7.1:

Problem 7.2:

Show that the following are vector spaces:

- (1) \mathbb{C} over \mathbb{R} , where vector addition and scalar multiplication are the same as in \mathbb{C} .
- (2) \mathbb{R} over \mathbb{Q} , where vector addition and scalar multiplication are the same as in \mathbb{R} .
- (3) $\mathbb{Q}[x]$ over \mathbb{Q} , where vector addition and scalar multiplication are the same as in $\mathbb{Q}[x]$.
- (4) \mathbb{F}_4 over \mathbb{F}_2 , where vector addition and scalar multiplication are the same as in \mathbb{F}_4 .

Solution 7.2:

 2

Let V be a vector space over \mathbb{F} . Let v be in V and α in \mathbb{F} .

Problem 7.3:

Show directly from the definitions that:

- $\alpha \cdot 0_V = 0_V$
- $0 \cdot v = 0_V$
- If $\alpha \neq 0$ and $v \neq 0_v$, then $\alpha \cdot v \neq 0_v$.

Solution 7.3:

Problem 7.4:

Show that any finite field of characteristic p is a vector space over \mathbb{F}_p . Solution 7.4:

Let V be a vector space over \mathbb{F} .

A set $S \subseteq V$ is said to be a generating set if any element in V is a linear combination of elements in S. In other words, given any element v in V, there exist some elements s_1, \ldots, s_r in S, and scalars $\alpha_1, \ldots, \alpha_r$ in \mathbb{F} , such that:

$$v = \alpha_1 s_1 + \dots \alpha_r s_r.$$

Problem 7.5:

Find generating sets of the following vector spaces.

- A²_{F₃} as a vector space over F₃.
 A²_{F₄} as a vector space over F₂.
 F[x] as a vector space over F.

Solution 7.5:

Let V be a vector space over \mathbb{F} .

A set $S \subseteq V$ is called a basis of V, if every non-zero element in V is a linear combination of elements in S in a unique way, up to zero scalars. In other words, for any non-zero element v in V, there there exist some elements s_1, \ldots, s_r in S, and non-zero scalars $\alpha_1, \ldots, \alpha_r$ in \mathbb{F} , such that:

$v = \alpha_1 s_1 + \dots \alpha_r s_r.$

And there are no other ways to choose s_i and α_i , except for permuting the elements.

A vector space is called finite dimensional if it has a basis with finitely many elements.

Problem 7.6:

Find a basis for:

- A²_{𝔽3} as a vector space over 𝔽3.
 A²_{𝒴4} as a vector space over 𝒴2.
- Could you find a basis with fewer elements? Solution 7.6:

Problem 7.7:

Find a basis for the following vector spaces:

- (1) $\mathbb{A}^3_{\mathbb{F}_q}$ over \mathbb{F}_q . (2) \mathbb{F}_4 over \mathbb{F}_2 . (3) \mathbb{F}_8 over \mathbb{F}_2 .

- Solution 7.7:

Problem 7.8:

Which of the following are generating sets?

- (1) $\{(1, 1), (2, 2)\}$ in $\mathbb{A}^2_{\mathbb{F}_5}$ over \mathbb{F}_q . (2) $\{(0, 1), (1, 0)\}$ in $\mathbb{A}^2_{\mathbb{F}_3}$ over \mathbb{F}_3 . (3) $\{(0, 1), (1, 0)\}$ $\mathbb{A}^2_{\mathbb{F}_4}$ over \mathbb{F}_2 . (4) $\{0, 1\}$ \mathbb{F}_2 over \mathbb{F}_2 . (5) $\{1\}$ \mathbb{F}_5 over \mathbb{F}_5

Which of them are bases?

Solution 7.8:

For the following exercises you may use without giving a proof the following two facts:

• Any vector space has a basis

• If a vector space has a finite basis, then all of its basis have the same amount of elements.

The dimension of a finite dimensional vector space is defined as the number of elements in a basis of it. Problem 7.9:

Compute the dimension of $\mathbb{A}_{\mathbb{F}_q}^n$ as a vector space over \mathbb{F}_q . How many elements does a *d*-dimensional vector space over \mathbb{F}_q have? Solution 7.9:

If in the definition of a vector space we replace \mathbb{F} with a ring R, we obtain what is called a module over R. **Problem 7.10:**

Show that $\mathbb{Z}/m\mathbb{Z}$ is a module over \mathbb{Z} , where scalar product is given by the product in $\mathbb{Z}/m\mathbb{Z}$ after restricting \mathbb{Z} modulo m.

Solution 7.10:

Problem 7.11:

Show that some modules do not have a basis. Solution 7.11:

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA. *Email address:* fzamora@math.princeton.edu

UCLA MATHEMATICS DEPARTMENT, Box 951555, Los Angeles, CA 90095-1555, USA. $\mathit{Email}\ address:\ \texttt{jmoraga@math.ucla.edu}$