OLGA RADKO MATH CIRCLE, WINTER 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet :

Throughout this worksheet \mathbb{F} is a field.
A vector space over a field \mathbb{F}, is given by a set V and two operations:
(1) vector addition $(+)$: an operation between two elements in V.
(2) Scalar multiplication (\cdot) : An operation between an element of \mathbb{F} and an element of V.

Satisfying the following properties, for any u, v, w in V and α, β in \mathbb{F} :
(1) Associativity: $u+(v+w)=(u+v)+w$
(2) Commutativity: $u+v=v+u$
(3) Identity element: There exists an element 0_{V} in V, such that $u+0_{V}=u$
(4) Inverse element: There exists an element $-u$ in V, such that $(-u)+u=0_{V}$
(5) Compatibility of scalar multiplication and field multiplication: $(\alpha \beta) u=\alpha(\beta u)$
(6) Identity element of scalar multiplication: $1 v=v$
(7) Distributivity of scalar multiplication with respect to vector addition: $\alpha(u+v)=\alpha u+\alpha v$
(8) Distributivity of scalar multiplication with respect to field addition: $(\alpha+\beta) v=\alpha v+\beta v$

Remember that \mathbb{F}^{n} is also called the affine space $\mathbb{A}_{\mathbb{F}}^{n}$.
We will label the coordinates in affine space $\mathbb{A}_{\mathbb{F}}^{n}$:

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

There are two operations that can be performed with points in affine space:

- Multiplication by scalars: If $c \in \mathbb{F}$ and $v=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{A}_{\mathbb{F}}^{n}$, the scalar multiplication is defined as

$$
c v:=\left(c x_{1}, c x_{2}, \ldots, c x_{n}\right)
$$

- Addition of points: If $v=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{A}_{\mathbb{F}}^{n}$ and $w=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{A}_{\mathbb{F}}^{n}$, the addition is defined as

$$
v+w:=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) .
$$

Problem 7.1:

Show that $\mathbb{A}_{\mathbb{F}}^{n}$ is a vector space over \mathbb{F}.

Solution 7.1:

Problem 7.2:

Show that the following are vector spaces:
(1) \mathbb{C} over \mathbb{R}, where vector addition and scalar multiplication are the same as in \mathbb{C}.
(2) \mathbb{R} over \mathbb{Q}, where vector addition and scalar multiplication are the same as in \mathbb{R}.
(3) $\mathbb{Q}[x]$ over \mathbb{Q}, where vector addition and scalar multiplication are the same as in $\mathbb{Q}[x]$.
(4) \mathbb{F}_{4} over \mathbb{F}_{2}, where vector addition and scalar multiplication are the same as in \mathbb{F}_{4}.

Solution 7.2:

Let V be a vector space over \mathbb{F}. Let v be in V and α in \mathbb{F}. Problem 7.3:

Show directly from the definitions that:

- $\alpha \cdot 0_{V}=0_{V}$
- $0 \cdot v=0_{V}$
- If $\alpha \neq 0$ and $v \neq 0_{v}$, then $\alpha \cdot v \neq 0_{v}$.

Solution 7.3:

Problem 7.4:
Show that any finite field of characteristic p is a vector space over \mathbb{F}_{p}. Solution 7.4:

Let V be a vector space over \mathbb{F}.
A set $S \subseteq V$ is said to be a generating set if any element in V is a linear combination of elements in S. In other words, given any element v in V, there exist some elements s_{1}, \ldots, s_{r} in S, and scalars $\alpha_{1}, \ldots, \alpha_{r}$ in \mathbb{F}, such that:

$$
v=\alpha_{1} s_{1}+\ldots \alpha_{r} s_{r} .
$$

Problem 7.5:

Find generating sets of the following vector spaces.

- $\mathbb{A}_{\mathbb{F}_{3}}^{2}$ as a vector space over \mathbb{F}_{3}.
- $\mathbb{A}_{\mathbb{F}_{4}}^{2}$ as a vector space over \mathbb{F}_{2}.
- $\mathbb{F}[x]$ as a vector space over \mathbb{F}.

Solution 7.5:

Let V be a vector space over \mathbb{F}.
A set $S \subseteq V$ is called a basis of V, if every non-zero element in V is a linear combination of elements in S in a unique way, up to zero scalars. In other words, for any non-zero element v in V, there there exist some elements s_{1}, \ldots, s_{r} in S, and non-zero scalars $\alpha_{1}, \ldots, \alpha_{r}$ in \mathbb{F}, such that:

$$
v=\alpha_{1} s_{1}+\ldots \alpha_{r} s_{r}
$$

And there are no other ways to choose s_{i} and α_{i}, except for permuting the elements.
A vector space is called finite dimensional if it has a basis with finitely many elements.

Problem 7.6:

Find a basis for:

- $\mathbb{A}_{\mathbb{F}_{3}}^{2}$ as a vector space over \mathbb{F}_{3}.
- $\mathbb{A}_{\mathbb{F}_{4}}^{2}$ as a vector space over \mathbb{F}_{2}.

Could you find a basis with fewer elements?

Solution 7.6:

Problem 7.7:
Find a basis for the following vector spaces:
(1) $\mathbb{A}_{\mathbb{F}_{q}}^{3}$ over \mathbb{F}_{q}.
(2) \mathbb{F}_{4} over \mathbb{F}_{2}.
(3) \mathbb{F}_{8} over \mathbb{F}_{2}.

Solution 7.7:

Problem 7.8:

Which of the following are generating sets?
(1) $\{(1,1),(2,2)\}$ in $\mathbb{A}_{\mathbb{F}_{5}}^{2}$ over \mathbb{F}_{q}.
(2) $\{(0,1),(1,0)\}$ in $\mathbb{A}_{\mathbb{F}_{3}}^{2}$ over \mathbb{F}_{3}.
(3) $\{(0,1),(1,0)\} \mathbb{A}_{\mathbb{F}_{4}}^{2}$ over \mathbb{F}_{2}.
(4) $\{0,1\} \mathbb{F}_{2}$ over \mathbb{F}_{2}.
(5) $\{1\} \mathbb{F}_{5}$ over \mathbb{F}_{5}

Which of them are bases?
Solution 7.8:

For the following exercises you may use without giving a proof the following two facts:

- Any vector space has a basis
- If a vector space has a finite basis, then all of its basis have the same amount of elements.

The dimension of a finite dimensional vector space is defined as the number of elements in a basis of it.

Problem 7.9:

Compute the dimension of $\mathbb{A}_{\mathbb{F}_{q}}^{n}$ as a vector space over \mathbb{F}_{q}.
How many elements does a d-dimensional vector space over \mathbb{F}_{q} have?

Solution 7.9:

If in the definition of a vector space we replace \mathbb{F} with a $\operatorname{ring} R$, we obtain what is called a module over R. Problem 7.10:

Show that $\mathbb{Z} / m \mathbb{Z}$ is a module over \mathbb{Z}, where scalar product is given by the product in $\mathbb{Z} / m \mathbb{Z}$ after restricting \mathbb{Z} modulo m.
Solution 7.10:

Problem 7.11:
Show that some modules do not have a basis.
Solution 7.11:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

