OLGA RADKO MATH CIRCLE, WINTER 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet 6:

Throughout this worksheet $\mathbb F$ is a field.

Let p(x) be a polynomial in $\mathbb{F}[x]$. We will define the elements of $\mathbb{F}[x]/(p(x))$ to be polynomials in $\mathbb{F}[x]$, where we declare two polynomials to be equal in $\mathbb{F}[x]/(p(x))$ if their difference is divisible by p(x). In other words, two polynoials r(x) and s(x) are equal in $\mathbb{F}[x]/(p(x))$ if there exists a polynomial q(x) in $\mathbb{F}[x]$, such that:

$$r(x) - s(x) = p(x)r(x).$$

Notice that this is similar to the construction of $\mathbb{Z}/n\mathbb{Z}$. Problem 6.1:

Compute how many elements the following sets have:

(1) $\mathbb{F}_5[x]/(x)$ (2) $\mathbb{F}_2[x]/(x^2+1)$ (3) $\mathbb{F}_3[x]/(x^3+1)$

Solution 6.1:

Problem 6.2: Let p(x) be a polynomial in $\mathbb{F}_q[x]$ of degree d. How many elements does the set $\mathbb{F}_q[x]/(p(x))$ have? Solution 6.2:

 $\mathbf{2}$

Problem 6.3:

The set $\mathbb{F}[x]/(p(x))$ has a ring structure, since we can have a notion of addition and multiplication coming from those of polynomials.

Make a multiplication table for the elements in $\mathbb{F}_2[x]/(x^2+1)$ and another one for the elements in $\mathbb{F}_2[x]/(x^2)$, then compare them.

Solution 6.3:

Remember that a ring is a field if every non-zero element is invertible. Problem 6.4:

Which of the following rings are fields?

(1) $\mathbb{F}_{2}[x]/(x^{2})$ (2) $\mathbb{F}_{2}[x]/(x^{2}+1)$ (3) $\mathbb{F}_{19}[x]/(x)$ (4) $\mathbb{F}_{3}[x]/(x^{2}+1)$ (5) $\mathbb{F}_{5}[x]/(x^{2}+1)$

Solution 6.4:

4

Remember that a polynomial p(x) in $\mathbb{F}[x]$ is called irreducible if there are no two polynomials r(x), s(x) in $\mathbb{F}[x]$ of degree at least one, such that:

$$p(x) = r(x)s(x)$$

Problem 6.5:

Show that the ring $\mathbb{F}_q[x]/(p(x))$ is a field if and only if p(x) is irreducible.

Hint: You might want to show that a finite ring is a finite field if and only if the product of any two non-zero elements is again non-zero.

Solution 6.5:

A polynomial is called monic if the coefficient of the leading term is 1. **Problem 6.6:**

Show that in $\mathbb{F}_p[x]$ there exist irreducible monic polynomials of degree 2. Solution 6.6:

6

Problem 6.7:

How many irreducible polynomials of degree 2 are there in $\mathbb{F}_p[x]$? Solution 6.7:

Problem 6.8: Show that in $\mathbb{F}_p[x]$ there exist irreducible monic polynomials of degree 3. How many irreducible polynomials of degree 3 are there in $\mathbb{F}_p[x]$? Solution 6.8:

We can make the same construction for any other ring, i.e. we can define R[x]/(p(x)) in the same way for an arbitrary ring.

For the following exercise let $R := \mathbb{Z}/4\mathbb{Z}$ **Problem 6.9:** How many elements do the following rings have?

(1) R[x]/(2x)

- (1) R[x]/(2x)(2) $R[x]/(x^2)$
- (3) $R[x]/(2x^2+x)$

Solution 6.9:

Problem 6.10:

Le R be the ring $\mathbb{Z}/m\mathbb{Z}$

Let p(x) be a polynomial of degree d in R[x]. Can you find a general formula for the number of elements of R[x]/(p(x))?

What if we impose the condition that p(x) is monic?

Solution 6.10:

10

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA. *Email address:* fzamora@math.princeton.edu

UCLA MATHEMATICS DEPARTMENT, Box 951555, Los Angeles, CA 90095-1555, USA. $\mathit{Email}\ address:\ \texttt{jmoraga@math.ucla.edu}$