
Counting Hats

Andreas and Nakul

Inspired by: What do hats have to do with Euler’s number? - NStatum

1 The Problem

Alex, Bob, Charlie and Dave go to a party wearing identical hats. Upon arriving, they
leave their hats in a room and forget which ones are theirs by the end of the party. Since
all hats look the same, they decide to randomly pick a hat before going home.

Problem 1.1.
What are the odds that all 4 of them (randomly) picked up their own hat?
Hint: You can calculate this probability by counting all possible hat-person combinations
(which equals the number of different orderings or permutations of A,B,C,D).

Problem 1.2.
What are the odds that none of them picked up their own hats?
Hint: Count the number of permutations of A,B,C,D where none of the letters are in
their correct positions. You can solve this by writing out all possible permutations but
there is an easier way.
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2 Permutations

The previous problem can be generalized as follows:

Guiding question: How many permutations on {1, 2, . . . , n} are there such that no
number returns to its original position?

To answer this question, we set up some definitions and notation.

Definition 1 (permutation): Abstractly, we can define a permutation π as a one-
to-one and onto function from {1, 2, . . . , n} to itself. We use π(i) to denote the image
of i ∈ {1, 2, . . . , n} under the function π.

With this definition, the function that maps

1 7→ 2

2 7→ 3

3 7→ 4

4 7→ 1

is a permutation on the set {1, 2, 3, 4}

Problem 2.1.
How many permutations are there on {1, 2, 3, 4}? What about {A,B,C,D}?
Hint: You have actually solved these questions in a previous worksheet, although we
defined permutation somewhat differently here.

Problem 2.2.
How many permutations are there on {1, 2, . . . , n}?
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Definition 2 (fixed point): We call i ∈ {1, 2, . . . , n} a fixed point of a permutation
π if π(i) = i.

For example, if we define π1 as:

1 7→ 1

2 7→ 2

3 7→ 4

4 7→ 3

and π2 as

1 7→ 3

2 7→ 4

3 7→ 1

4 7→ 2

then 1 and 2 are the fixed points of π1 and π2 has no fixed points.

Problem 2.3.
How many permutations are there on {1, 2, . . . , n} for which 1 is a fixed point. Using this
result, what is the probability that a (uniformly) random permutation π on {1, 2, . . . , n}
fixes 1?

Remark: This is the same as the probability of a permutation on {1, 2, . . . , n} fixing any
arbitrary element 1 ≤ i ≤ n.

Problem 2.4.
What is the probability that a (uniformly) random permutation π on {1, 2, . . . , n} fixes
1 and 2?
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Definition 3 (derangement): We call a permutation π a derangement if it does
not fix any element i.e. for all i between 1 and n, π(i) ̸= i.

Problem 2.5.
How many derangements on {1, 2, 3, 4} are there?

With this new terminology, the question we asked at the start of this section can be
rephrased as follows:

Guiding question rephrased: How many derangements on {1, 2, . . . , n} are there?

In the next section, we will introduce the final tool required to arrive at the solution.
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3 Inclusion-Exclusion

3.1 Recap

Problem 3.1.
What is the probability that a (uniformly) random permutation π on {1, 2, . . . , n} fixes
1 or 2 (or both)?
Hint: Be careful not to double count!

You may have noticed that the previous question is a bit trickier because we need to count
the permutations that fix 1, ones that fix 2 as well as ones that fix 1 and 2 and subtract
them to avoid double counting. Here, you applied a concept that you are probably
familiar with but we will still recap: The Inclusion-Exclusion principle.

Problem 3.2.
Use Venn Diagrams to prove that for finite sets A and B we have

|A ∪B| = |A|+ |B| − |A ∩B|.

Problem 3.3.
Use Venn Diagrams to prove that for finite sets A,B and C we have

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |A ∩ C|+ |A ∩B ∩ C|
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3.2 Generalization

It turns out (as you might have guessed) that this formula generalizes for the union of n
(possibly intersecting) sets. The general formula is pretty messy to write out and it helps
to expand it out for n = 4 and n = 5 to get a hang of it.∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k+1

( ∑
1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik |

)
We can write this slightly differently as:∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =∑
i

|Ai| −
∑
i<j

|Ai ∩ Aj|+
∑
i<j<k

|Ai ∩ Aj ∩ Ak|+ · · ·+ (−1)n+1|A1 ∩ · · · ∩ An|.

The intuition here is that you start by adding the “pieces” in the Venn Diagram that
correspond to entire sets, then you take away 2-way intersections to avoid overcounting,
then you add back 3-way instersections to avoid undercounting and so on until you finally
add back or take away the intersection of all sets (the center of the Venn Diagram).

Problem 3.4.
Prove the above formula using induction.

Problem 3.5.
Assume that you (independently) roll 4 dice. What is the probability that you get a six
on at least one of them?
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You probably solved the previous question by first counting the number of combina-
tions where none of the faces have a six and then subtracting that from the total number
of outcomes. Just for fun, let’s calculate this another way.

Problem 3.6.
Let X denote the set of all 64 outcomes of the experiment described in the previous
problem, where each outcome is a list of 4 numbers, indicating the number that appears
on the faces of the 4 dice. Let A denote the set of outcomes where the first face shows a
six, B the set of outcomes where the second face shows a six, C defined similarly for the
third face and D for the fourth face. Then the number of outcomes where at least one
of the faces is a six is precisely |A ∪B ∪ C ∪D|. Use the generalised inclusion-exclusion
formula for n = 4 to calculate this. Use this to verify your previous answer.

Remark: This is a terribly inefficient way to solve the problem. However, it illustrates
the method we will use to count derangements.
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3.3 Back to derangements

We now return to the question of finding the number of dearrangements on {1, 2, . . . , n}
which we will henceforth denote Dn.

Problem 3.7.
How many permutations on {1, 2, . . . , n} fix 1, 2, . . . , k − 1 and k where k ≤ n?

Problem 3.8.
Let i1, i2, . . . , ik be (any) distinct numbers between 1 and n. How many permutations on
{1, 2, . . . , n} fix i1, i2, . . . , ik−1 and ik?

We will use this idea, along with the inclusion-exclusion principle, to explicitly find a
formula for Dn.

Problem 3.9.
let Si denote the set of permutations on {1, 2, . . . , n} that fix i. Explain why it follows
that

Dn = n!− |S1 ∪ · · · ∪ Sn|.

Hint: Count the number of derangements as the total number of permutations on
{1, 2, . . . , n} minus the number of permutations that fix at least one element.
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All that is left to do now is carefully apply the inclusion-exclusion principle.

Problem 3.10.
Calculate |S1 ∪ · · · ∪ Sn| by following the given steps.

1. Note that a straightforward application of the inclusion-exclusion principle gives us
that∣∣∣∣∣

n⋃
i=1

Si

∣∣∣∣∣ =∑
i

|Si| −
∑
i<j

|Si ∩ Sj|+
∑
i<j<k

|Si ∩ Sj ∩ Sk|+ · · ·+ (−1)n+1|S1 ∩ · · · ∩ Sn|.

2. We want to simplify each of the sums. Using one of the previous problems (cite
which one you use in your answer!) argue that the size of the intersections does not
depend on which sets you intersect, just how many you intersect. From this deduce
that∣∣∣∣∣

n⋃
i=1

Si

∣∣∣∣∣ =∑
i

(n− 1)!−
∑
i<j

(n− 2)! +
∑
i<j<k

(n− 3)! + · · ·+ (−1)n+1(n− n)!.

3. Observe that the term within each sum is actually independent of the iterator
being summed over. Therefore, we just need to count how many different 2-way
intersections, 3-way intersections and so on are possible. Using this idea, show that
the above can be rewritten as∣∣∣∣∣

n⋃
i=1

Si

∣∣∣∣∣ =
(
n

1

)
(n− 1)!−

(
n

2

)
(n− 2)! +

(
n

3

)
(n− 3)! + · · ·+ (−1)n+1(n− n)!

=
n!

1!
− n!

2!
+

n!

3!
+ · · ·+ (−1)n

n!

n!

Putting all of this together, we get a formula for Dn

Dn = n!

(
1− 1 +

1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n

1

n!

)

Remark: While this is an explicit formula that can be used to calculate Dn it still looks
pretty messy and does not give much intuition about what is going on. For example,
what happens to the probability that no one gets their hat back when the number of hats
becomes very large? Does it approach 1? Does it approach 0? Neither?
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4 Limits and e

We take a slight detour in this section to explain the idea of a limit and define the number
e. The focus will be on intuition rather than formalism.

4.1 Lazy tortoise

Problem 4.1.
A tortoise is competing in a 1 mile marathon. The tortoise gets progressively lazier.
Every day (starting from day one) the tortoise walks half of the distance left between his
current position and the the finish line. For example, he walks 1/2 a mile on day one,
1/4 mile on day two and so on. Find a formula for dn, the total distance travelled by the
tortoise upto and including day n.

Problem 4.2.
Prove that the tortoise never crosses the finish line.
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Problem 4.3.
Out of sympathy, the organizers of the marathon decide to make a consolation prize for
the tortoise. They draw a second “almost-finish” line, some (positive) distance before
the actual finish line. Prove that, no matter where the almost-finish line is drawn, the
tortoise always wins the consolation prize.
Hint: First convince yourself that if the almost-finish line is drawn ϵ = 0.1 miles, 0.01
miles or even just 0.001 miles before the finish line, the tortoise will eventually cross it
(i.e. there exists some N such that for all n ≥ N we have that dn is greater than 0.999
although it is less than 1.) Writing a formal proof that this works for any ϵ > 0 is tricky
but doable!

Remark: In the previous problems, we saw the notion of a sequence (tortoise) getting
arbitrarily close (winning the consolation prize) to a certain number even though it never
actually reaches that number (finish line). This idea appears again in the next problem.
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4.2 Millionaire bank

Problem 4.4.
A bank offers you an interest rate of 100% per year. If you invest 1 dollar at the start of
the year, how much money is there at the end of the year?

Problem 4.5.
You are determined to exploit the bank to convert the 1 dollar into as much money as
possible within the period of one year. The bank offers you a deal where they allow you
to invest money for half the time (6 months) for half the interest rate (50%). After 6
months, you may invest the money again (at the same rate) if you’d like. Would you take
this deal or not? Why?

Problem 4.6.
After a lot of begging and pleading, you convince the bank to let you deposit and withdraw
the money at any frequency you like, scaling the interest rate accordingly. Specifically,
you can put the money in for 1/n years at (100/n)% and compound it n times. Find
a formula for the money in your account at the end of one year mn if you decide to
compound it n times.
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Problem 4.7.
Show that mn is an increasing sequence i.e. the more often you go to the bank, the richer
you will become.

Problem 4.8.
Enthused by your financial success, you conjecture that if you spent the year living at
the bank, compounding your money infinitely often, you would become a millionaire.
Prove that your conjecture is false. In fact, prove that no matter how many times you
compound your money, you will have less than 4 dollars in your bank at the end of the
year.
Hint: Use the binomial formula to expand your formula for mn and then use induction.
You will have to use some clever inequalities related to geometric sums.
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4.3 Properties of e

Intuitively, the sequence is increasing and bounded above so it keeps growing but cannot
grow to an arbitrarily large size. In this way, the sequence mn is similar to dn and also
“converges” to some number. Using a calculator, for large values of n you can see that
mn is around 2.71828. The exact number that this sequence approaches (called its limit)
is an irrational number which we call e.

It turns out there is another way to approximate e. Let’s apply the binomial theorem
to the expression

(
1 + 1

n

)n
:(

1 +
1

n

)n

=
n∑

k=0

(
n

k

)
1n−k

(
1

n

)k

This simplifies to:

n∑
k=0

n!

k!(n− k)!

1

nk
=

n∑
k=0

1

k!
· n!

nk(n− k)!

Without getting into too many details, as n approaches infinity, the term n!
nk(n−k)!

approaches 1 for every k, because the numerator and denominator are roughly of the
same order as n grows large. Therefore, the expression becomes:

lim
n→∞

(
1 +

1

n

)n

=
∞∑
k=0

1

k!
= 1 + 1 +

1

2!
+

1

3!
+

1

4!
+ · · ·

Problem 4.9.
We defined e as

lim
n→∞

(
n+

1

n

)n

.

Assuming that limits behave nicely show that

lim
n→∞

(
1− 1

n

)n

=
1

e
.
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Problem 4.10.
We used the binomial expansion to rewrite e as a slightly different limit whose partial
sums can be computed to approximate the limit. Do a similar expansion to show that

lim
n→∞

(
1− 1

n

)n

=
∞∑
k=0

(−1)k
1

k!
= 1− 1 +

1

2!
− 1

3!
+

1

4!
− · · ·

Problem 4.11.
Use this series expansion for 1/e to show that 2 < e < 3.
Hint: Show that 1/3 < 1/e < 1/2.
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4.4 Hats and e

Problem 4.12.
Prove that the probabilityDn/n! no one gets their hat back approaches 1/e as the number
of hats goes to infinity. In fact, this gives a very elegant formula for the number of
derrangments:

Dn =

[
n!

e

]
where [·] denotes the nearest integer function.
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