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1 Reminders about Permutations

Before we start drawing, it will help to establish notation and properties of permutations. Recall that earlier
this quarter, we showed that the set of permutations forms a group with composition, called the symmetric
group. We recap these definitions below.

Definition 1 A group is a set G together with a multiplication operation · such that

• (Associativity) For all x, y, z ∈ G, x · (y · z) = (x · y) · z.

• (Identity) There is an element e ∈ G such that for any x ∈ G, e ·x = x · e = x. e is called the identity
element of G.

• (Inverses) For all x ∈ G, there exists a y ∈ G such that x · y = y · x = e.

(Recall that we often write xy as a shorthand for x · y.)

Definition 2 The symmetric group Sn is the set of permutations σ of a set of n different symbols (which
are commonly represented by 1, . . . , n). The multiplication operation is as follows: given two permutations
σ, τ of 1, . . . , n, the permutation στ is the one that applies τ first, then σ, to the set of n symbols.

Problem 1 Let σ, τ ∈ S4 be the following permutations of four elements: σ sends 1 to 1, 2 to 3, 3 to 4, and
4 to 2, and τ sends 1 to 4, 2 to 3, 3 to 1, and 4 to 2. Find the permutation στ .

While we could continue describing permutations elementwise like we did in Problem 1, it will be helpful to
introduce some notation.

Definition 3 [a1 . . . an] denotes the permutation σ ∈ Sn where σ sends i to ai. For example, [51432] is the
permutation in S5 that takes 1 to 5, 2 to 1, 3 to 4, 4 to 3, and 5 to 2.

Problem 2 Using our new notation, rewrite all three permutations σ, τ, στ from Problem 1.
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Problem 3 Compute the following products:

• [132][213]

• [1234][1432]

• [51432][24315]

Problem 4 In brackets notation (our current notation), what is the identity element of Sn for any given
n?

Problem 5 Find the inverse of [51432] in S5. In general, how would you find the inverse of a given
permutation in brackets notation?
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2 Cycles and Generators

While our previous notation is helpful for describing permutations element-wise, we have seen that group
operations like multiplications and taking inverses can be quite clunky. We now introduce a new notation
to denote permutations that will help us investigate the group structure.

Definition 4 For k ≥ 2, a k-cycle, denoted (a1 . . . ak) is a permutation that sends a1 to a2, a2 to a3, and so
on, and ak back to a1, while keeping all other symbols that aren’t a1 . . . ak the same. For example, the 3-cycle
(234) sends 2 to 3, 3 to 4, 4 to 2, and 1 (and any other symbols present) to itself. 2-cycles in particular are
also known as transpositions.

Problem 6 Find the products of the following cycles:

• (12)(23)

• (123)(234)

• (1234)(15)

• (123)(456)(132)(465)

• (56)(1789423)(56)

• (1789423)−1(56)(1789423)(56)(1789423)(56)(1789423)−1(56)
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In the last problem, we multiplied some examples of disjoint cycles (that is, cycles that don’t have any
numbers in common). Although permutations in general don’t commute with each other, our answers
suggest that disjoint cycles do commute.

Problem 7 Evaluate the last three examples of Problem 6 by commuting disjoint cycles, if you didn’t already.
Can you explain why this works?

Problem 8 Explain how to write any permutation σ ∈ Sn as a product of disjoint cycles. Such a product
expression is called cycle notation for σ. (Hint: The identity element e can be written as an empty product.
For any other permutation, start at an element that doesn’t go to itself.)

Problem 9 How would you find the inverse of a given permutation in cycle notation? As an example, find
the inverse of (1257)(348) in S8. Is this more or less convenient than with our previous bracket notation?

Earlier this quarter, we described multiplication in certain groups by writing down their multiplication tables.
But now that we have the groups Sn with n! elements each, we would rapidly run out of paper trying to
write down all these tables. Instead, we can describe multiplication in a group by describing multiplication
of a few of its elements.

Definition 5 Let S be a subset of a group G. S is said to generate G if any element of G can be given by
multiplying together elements of S. (As before, the identity element e will be thought of as the empty product,
which slightly justifies using that letter for the identity element.)

Problem 10 Earlier this quarter, we studied the following two examples of groups: the integers mod 4 with
the operation + (top table below) and the rectangle symmetry group with the operation composition (bottom
table below). For each of these groups, find subsets that generate them.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

◦ e r f1 f2
e e r f1 f2
r r e f2 f1
f1 f1 f2 e r
f2 f2 f1 e r
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Problem 11 Show that the set of cycles generates the symmetric group Sn.

Problem 12 How many cycles, in total, does Sn have? Do you think that the set of cycles is a useful
generating set?

Problem 13 Show that any k-cycle in Sn can be written as a product of k−1 transpositions. (Hint: Problem
6 has some examples of (small) cycles. Be inspired by them.)

Problem 14 Using Problems 11 and 13, show that the set of transpositions in Sn generate it. How many
transpositions are there? Is this a more useful set?
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Problem 15 Compute the following products of transpositions:

• (12)(23)(12)

• (12)(23)(34)(23)(12)

• (12)(23)(34)(45)(34)(23)(12)

Problem 16 We define an adjacent transposition to be a transposition switching two adjacent numbers
i and i+1. Show that the set of adjacent transpositions generate Sn. (Hint: By Problem 14 we can write any
permutation as a product of transpositions. Use the previous problem to inspire you to write any transposition
as the product of adjacent transpositions.) How many adjacent transpositions does Sn have?

Problem 17 (Bonus) Find two elements that generate Sn for any n. (We won’t be using these generators
later, so do this problem whenever you have the time!)
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3 Visualizing Multiplication—Cayley Graphs

Given a group G with a generating set S, we can think about multiplying a lot of elements of S together.
Each successive term s1, s1s2, s1s2s3, . . . gives us an element of G, and together they give a path through
G, of sorts. In order to draw this path, we’ll represent G as a graph. Recall that a graph consists of a set of
vertices V and a set of edges E between pairs of vertices.

Definition 6 A directed graph (or digraph for short) is a set of vertices V along with a set of directed
edges E—that is, edges e ∈ E go from some vertex v to vertex w. (The opposite direction is considered a
different directed edge.)

Directed edges are typically drawn as arrows. If v and w in a directed graph have one edge going from v to
w and one edge going from w to v, we often abbreviate it by drawing an undirected edge between them. For
instance, these two are the same graph,

but these two are not—even though the shapes look the same, the right graph has a vertex with three edges
coming out of it and the left graph does not.

Definition 7 Given a group G and a generating set S in G, its Cayley graph is the directed graph Γ given
as follows:

• The vertices of Γ are the elements of G.

• For every x ∈ G and every s ∈ S, Γ has a directed edge from x to xs.

Problem 18 For the groups and sets of generators you found in Problem 10, draw their Cayley graphs.
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Problem 19 Compare the three sets of generators for Sn that we found in the previous section: the cycles
(Problem 11), the transpositions (Problem 14) and the adjacent transpositions (Problem 16). For S2, the
group of permutations of two symbols, is there a difference? Draw the Cayley graph for S2.

Problem 20 Compare the three sets of generators for Sn that we found in the previous section: the cycles
(Problem 11), the transpositions (Problem 14) and the adjacent transpositions (Problem 16). For S3, the
group of permutations of three symbols, is there a difference? Draw the Cayley graph given by each set of
generators. Which one looks the cleanest?
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Problem 21 Using the generating set of adjacent transpositions, draw the Cayley graph for S4.
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These Cayley graphs for Sn (using the generating set of adjacent transpositions) are also called permutohe-
dra 1of order n, denoted Pn. Clearly, Pn will get a lot tougher to draw for higher n, so we restrict ourselves
to describing their features. Specifically, we’ll count and describe the vertices, edges, and faces of Pn. (Since
Pn isn’t planar, the notion of a face is a little more finicky. We’ll consider any cycle that doesn’t break into
smaller cycles a face.)

Problem 22 How many vertices does Pn have?

Problem 23 How many edges does Pn have? (Hint: Think of what an edge corresponds to in terms of
permutations.)

Problem 24 Show that all faces of Pn are either quadrilaterals or hexagons. (Bonus) How many of each
kind of face does Pn have?

1This is one of several equivalent definitions for the permutohedron. We will encounter another one in the next section of
this worksheet, and yet another one next week, so stay tuned.
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4 Permutohedra in Space

Problem 25 What dimensional shapes do P1, P2, and P3 remind you of?

Unless you drew Problem 21 exceptionally well, realizing P4 as a polyhedron might be a little tough. Instead,
we’ll show it’s a planar graph. Recall that a planar graph is a graph that can be drawn in the plane without
crossing edges, and that such a graph can be folded into a polyhedron in several ways, one of which is by
adding a point at infinity.

Problem 26 Show that P4 is a planar graph, by drawing it below without crossing edges. Use this to sketch
P4 as a polyhedron in 3 dimensional space.
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By now, it should seem like Pn is an (n − 1)-dimensional object. In order to prove this, we want a more
systematic way of putting it into space.

Problem 27 Consider the permutations of the coordinates of the point (1, 2, . . . , n) in n-dimensional space.
Show that the polytope (general term for polyhedron in higher dimensions) with these vertices forms Pn with
its edges.

Problem 28 Show that all the permutations of (1, 2, . . . , n) lie on the same hyperplane in n-dimensional
space (and therefore form a (n− 1)-dimensional object).

Finally, P3 (the hexagon) famously tessellates the plane (2-dimensional space). Also, P2 (the line segment)
trivially tessellates the line (1-dimensional space). In fact, this is true for all Pn, but is much harder to show
for higher n. In the case of P4, we can at least draw the picture:

Problem 29 (Challenge) Show that P4 tessellates 3-dimensional space.
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