OLGA RADKO MATH CIRCLE, WINTER 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet :

Throughout this worksheet \mathbb{F} is a field.
\mathbb{F}^{n} is also called the affine space $\mathbb{A}_{\mathbb{F}}^{n}$.
We will label the coordinates in affine space $\mathbb{A}_{\mathbb{F}}^{n}$:

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

There are two operations that can be performed with points in affine space:

- Multiplication by scalars: If $c \in \mathbb{F}$ and $v=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{A}_{\mathbb{F}}^{n}$, the scalar multiplication is defined as $c v:=\left(c x_{1}, c x_{2}, \ldots, c x_{n}\right)$.
- Addition of points: If $v=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{A}_{\mathbb{F}}^{n}$ and $w=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{A}_{\mathbb{F}}^{n}$, the addition is defined as

$$
v+w:=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)
$$

Problem 5.1: Perform the following operations:
(1) $(0,1,2)+(0,2,0)+(0,0,1)$ in $\mathbb{A}_{\mathbb{F}_{3}}^{3}$
(2) $(0,1,2)+(0,2,0)+(0,2,3)$ in $\mathbb{A}_{\mathbb{F}_{5}}^{3}$
(3) $(1,1,1,1)+(1,1,1,1)$ in $\mathbb{A}_{\mathbb{F}_{2}}^{4}$
(4) $2(0,1,2)$ in $\mathbb{A}_{\mathbb{F}_{3}}^{3}$

Solution 5.1:

A line in $\mathbb{A}_{\mathbb{F}}^{n}$ is a set of points of the form

$$
\left(p_{1}(t), p_{2}(t), \ldots, p_{n}(t)\right)
$$

Where $p_{i}(t)$ are linear polynomials, not all of them constants, and t takes all the possible values in \mathbb{F}. Problem 5.2: Write the points of the following lines:
(1) $(t, 2 t, 0)$ in $\mathbb{A}_{\mathbb{F}_{3}}^{3}$
(2) $(2+t, 1+2 t, 0)$ in $\mathbb{A}_{\mathbb{F}_{3}}^{3}$
(3) $(2+t, 2 t, 0, t-1)$ in $\mathbb{A}_{\mathbb{F}_{5}}^{4}$
(4) $(1+t, t, 0, t-1)$ in $\mathbb{A}_{\mathbb{F}_{2}}^{4}$

Solution 5.2:

Problem 5.3:

- How many points does $\mathbb{A}_{\mathbb{F}_{q}}^{n}$ have?
- How many points does a line in $\mathbb{A}_{\mathbb{F}_{q}}^{n}$ have?

Solution 5.3:

Problem 5.4: Show that given two distinct points in affine space, there is a unique line passing through both of them.
Solution 5.4:

Problem 5.5: Show that three different points p, q, r in affine space are contained in a line, if and only if there exists a constant $\lambda \in \mathbb{F}$, such that

$$
p+\lambda(q-p)=r
$$

Solution 5.5:

Problem 5.6: Show that for affine space $\mathbb{A}_{\mathbb{F}_{3}}^{n}$, three different points p, q, r in affine space are contained in a line if and only if

$$
p+q+r=0
$$

Is this true for other fields?

Solution 5.6:

Problem 5.7: Show that three different points in $\mathbb{A}_{\mathbb{F}_{3}}^{n}, p=\left(p_{1}, \ldots, p_{n}\right), q=\left(q_{1}, \ldots, q_{n}\right), r=\left(r_{1}, \ldots, r_{n}\right)$ are in a line, if and only if:

For each $i \in\{1,2, \ldots, n\}$, the elements p_{i}, q_{i}, r_{i} are in 'arithmetic progression'.
Is this true for other fields?
Solution 5.7:

Problem 5.8: Show that three different points in $\mathbb{A}_{\mathbb{F}_{3}}^{n}, p=\left(p_{1}, \ldots, p_{n}\right), q=\left(q_{1}, \ldots, q_{n}\right), r=\left(r_{1}, \ldots, r_{n}\right)$ are in a line, if and only if:

For each $i \in\{1,2, \ldots, n\}, p_{i}, q_{i}, r_{i}$ are all the same or are all different from one another.
Is this true for other fields?
Solution 5.8:

A subset of Affine space is called a cap set, if no three different points from the set belong to a line. Problem 5.9:

Determine what is the largest size of a cap set in $\mathbb{A}_{\mathbb{F}_{p}}^{2}$, where p is a prime number. Solution 5.9:

Problem 5.10: Can you determine the largest size of a cap set in $\mathbb{A}_{\mathbb{F}_{3}}^{4}$? Solution 5.10:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

