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1. Arithmetic Functions

A common problem in number theory is understanding a natural number n via its divisors. If we have
some interesting problem we want to solve for all natural numbers, it can be enough to understand the
problem for small divisors of n and build up n from its divisors. Today, we will explore a special class of
functions called “arithmetic functions” that emphasise this approach.

Problem 1. Recall that we can write d|n to say “d divides n”. Let n ∈ N and D(n) = {d ∈ N : d|n}
(that is, D(n) is the set of all natural numbers d such that d divides n). What is max(D(n))?

Notation: We write ∑
d|n

f(d) :=
∑

d∈D(n)

f(d).

to denote a sum over all the divisors of n.

Problem 2. Compute ∑
d|128

d

Definition 1 (arithmetic function). We define f : N → R to be an arithmetic function if it can be
written in the form

f(n) =
∑
d|n

g(d)

for some g : N → R.

Example 1. For this section, we will deal with two simple arithmetic functions, the “sum of divisors”
function σ(n) and the “number of divisors” function τ(n).

σ(n) =
∑
d|n

d

i.e. σ(n) is the arithmetic function corresponding to g(d) = d.

Problem 3. Define τ(n), the “number of divisors” function. What is the corresponding g(d)?

Problem 4. Compute τ(4) and σ(28).

Problem 5. Let p be a prime number and k ∈ N. Find τ(pk) depending only on k. Prove your answer.

Problem 6. Let m,n be relatively prime. Prove that σ(mn) = σ(m)σ(n) and τ(mn) = τ(m)τ(n).

We call an arithmetic function f(n) multiplicative if it satisfies the property f(nm) = f(n)f(m) when
n,m are relatively prime.

Problem 7. Find an arithmetic function f(n) that is not multiplicative.
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2. Even Perfect Numbers

Definition 2 (perfect number). Let n ∈ N. We say n is perfect if σ(n) = 2n.

Problem 8. Prove that a number n ∈ N is perfect if and only if the sum of all of its proper divisors (i.e.
those strictly less than n) equals n. Equivalently, show that n is perfect if and only if∑

d|n,d≤n

d = n.

Problem 9. Find all perfect numbers under 30.

Problem 10. There are only two perfect numbers n with 30 < n ≤ 10000. They are 496 and 8128. Can
you find a pattern in the prime factorisations of even perfect numbers?

Problem 11. Let n ∈ N. If 2n−1 is prime, we call it a Mersenne prime. Prove that if 2n−1 is prime,
then 2n−1 · (2n − 1) is a perfect number.

It is in fact true that every even perfect number is of the form 2p−1(2p − 1) for a prime p where 2p − 1 is
prime.

Problem 12. (Challenge problem). Prove that every even perfect number is of the form 2p−1(2p− 1) for
a prime p where 2p − 1 is prime.

? Question: Are there any odd perfect numbers?

This is currently an open question: nobody knows if there exists an odd perfect number. If you find one,
please let me know!
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3. Möbius Inversion

Definition 3 (Dirichlet convolution). Given two arithmetic functions f, g : N → R, we can combine them
via convolution:

(f ∗ g)(n) :=
∑
d|n

f(d)g(n/d)

Let us define some new arithmetic functions to use. Let n ∈ N. We say n is square-free if there is no
prime p so that p2|n.

Definition 4 (Möbius function). Let µ(n) be the function given by

µ(n) =


1 n is square-free with an even number of prime factors

−1 n is square-free with an odd number of prime factors

0 n is not square-free

.

This is called the Möbius Function.

Definition 5 (Dirac function). Let ϵ be the function given by ϵ =

{
1 n = 1

0 n ̸= 1
. This is called the Dirac

function.

Definition 6 (constant function). Let 1(n) = 1. This is called the constant function.

Definition 7 (identity function). Let I(n) = n. This is called the identity function.

Problem 13. Prove the following facts about Dirichlet convolution:

(1) σ = I ∗ 1
(2) τ = 1 ∗ 1
(3) 1 ∗ µ = ϵ
(4) For any arithmetic function f : N → R, f ∗ ϵ = f

Problem 14. Prove that convolution is commutative and associative. That is, for arithmetic functions
f, g, h : N → R, we have

(1) f ∗ g = g ∗ f
(2) (f ∗ g) ∗ h = f ∗ (g ∗ h)

Note that by Problem 13.4, ϵ is the identity under convolution. It is not the identity function (that is I)!
Before we defined an arithmetic function as a function of the form

f(n) =
∑
d|n

g(d).

Notice that we called our functions µ, ϵ,1, I arithmetic functions without ever verifying that there were
corresponding functions g(d). It turns out that there is an easy way to find our g(d) for arithmetic
functions f(n), called Möbius Inversion. First, notice that
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Problem 15. Prove that if

f(n) =
∑
d|n

g(d)

then f(n) = g ∗ 1.

Problem 16. (Möbius Inversion). Prove that f = g ∗ 1 if and only if g = f ∗ µ.
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4. Euler’s Totient Function

Define ϕ(n) to be how many integers i with 1 ≤ i ≤ n are relatively prime to n.

Problem 17. Calculate ϕ(7), ϕ(10).

Problem 18. Let p be a prime. Prove that ϕ(p) = p− 1.

Problem 19. Let n ∈ N. Prove that if ϕ(n) = n− 1, then n is prime.

Problem 20. Prove that ϕ is multiplicative.

Problem 21. Prove that ∑
d|n

ϕ(d) = n.

Problem 22. Prove that

ϕ(n) = n
∑
d|n

µ(d)

d
.
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5. Dirichlet Series (Challenge Problems)

This section requires some knowledge of calculus, particularly infinite series. If you reach this section
but are not familiar with infinite series, you can go back to the challenge problems you may have skipped
from earlier in the packet.

Definition 8 (Dirichlet series). Given an arithmetic function f : N → C (note that we now work over C
rather than R), we can define a Dirichlet series associated to f :

Df (s) =

∞∑
n=1

f(n)

ns
.

This can be treated as a function Df (s) : C → C.

The most famous example of a Dirichlet series is the Riemann zeta function,

ζ(s) = D1(s) =
∞∑
n=1

1

ns
.

Problem 23. Prove that ( ∞∑
n=1

f(n)

ns

)( ∞∑
n=1

g(n)

ns

)
=

∞∑
n=1

(f ∗ g)(n)
ns

for any s ∈ C where all sums converge.

Problem 24. Prove that

Dµ(s) =
1

ζ(s)
.

Problem 25. Prove that

ζ(s− 1)

ζ(s)
= Dϕ(s)
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