Worksheet 4:

A line arrangement consists of a non-empty set of points \mathcal{P}, and a non-empty set of lines \mathcal{L} such that:

- Each point in \mathcal{P} is contained in at least two lines in \mathcal{L}.
- Each pair of lines in \mathcal{L} intersect at at most one point in \mathcal{P}.

If furthermore, every pair of lines intersect at exactly one point, then the line arrangement is said to be projective.

For example, if you draw some lines in a piece of paper (\mathbb{R}^2), by taking the set of points to be only the intersections of these lines, you obtain a line arrangement, this arrangement may not be projective.

Problem 4.1: Construct line arrangements containing exactly 1, 2, 3 and 4 points.

How many lines can they contain?

What happens if we ask for them to be projective line arrangements?

Solution 4.1:
We will care about some very special line arrangements. A line arrangement is said to form a *combinatorial projective plane* if it furthermore satisfies the following properties:

- Given two points in \(P \), exactly one line in \(L \) passes through both of them.
- Given two lines in \(L \), exactly one point in \(P \) is contained in both of them.
- Every point in \(P \) is contained in the same number of lines in \(L \).
- Every line in \(L \) contains the same number of points in \(P \).
- There are at least two points in \(P \).

Problem 4.2: Can you construct a combinatorial projective plane with exactly 3 points and 3 lines?

Can you construct a combinatorial projective plane with exactly 7 points and 7 lines?

What other line arrangements can be constructed if in the definition of combinatorial projective planes we allow for \(P \) to be only one point or \(L \) to be only one line.

Solution 4.2:
Let us focus on finite combinatorial projective planes. For a finite combinatorial projective plane, let

- N be the number of lines
- t be the number of points
- r be the number of points in a line
- k be the number of lines that contain a single point.

Problem 4.3: Show that $Nr = kt$.

Hint: Look at pairs (p, L), where $p \in L$.

Solution 4.3:
Problem 4.4: Show that $k(r - 1) = t - 1$

Hint: Fix a point and count the number of remaining points in two different ways.

Solution 4.4:
Problem 4.5: Show that $N = 1 + r(k - 1)$.

Hint: Look at the points in one fixed line l_0, and regroup the other lines based on which of the points of l_0 they contain.

Solution 4.5:
Problem 4.6: Show that $r = k$ and $N = t$, i.e. there are the same number of points and lines.

Hint: Use the equalities from the previous Problems.

Solution 4.6:
Define $q := r - 1$, this value is called the order of a combinatorial projective plane.

Problem 4.7: Show that $N = r^2 - r + 1 = q^2 + q + 1$. Which agrees with the number of lines and points that we have computed for the projective planes over \mathbb{F}_q in previous classes.

Solution 4.7:
You can use the following fact: Finite fields \(\mathbb{F}_q \) can only have orders of the form \(q = p^m \), where \(p \) is a prime number and \(n \) is a non-negative integer. For any number \(q = p^n \), there exists a field of \(q \) elements.

Problem 4.8:

For which orders have we created combinatorial projective planes in the previous classes? (via the projective planes \(\mathbb{P}^2_{\mathbb{F}_q} \))

Could there be combinatorial projective planes of any order?

Solution 4.8: