OLGA RADKO MATH CIRCLE, WINTER 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet 4:

A line arrangement consists of a non-empty set of points \mathcal{P}, and a non-empty set of lines \mathcal{L} such that:

- Each point in \mathcal{P} is contained in at least two lines in \mathcal{L}
- Each pair of lines in \mathcal{L} intersect at at most one point in \mathcal{P}.

If furthermore, every pair of lines intersect at exactly one point, then the line arrangement is said to be projective
For example, if you draw some lines in a piece of paper $\left(\mathbb{R}^{2}\right)$, by taking the set of points to be only the intersections of these lines, you obtain a line arrangement, this arrangement may not be prjective.
Problem 4.1: Construct line arrangements containing exactly $1,2,3$ and 4 points.
How many lines can they contain?
What happens if we ask for them to be projective line arrangements?

Solution 4.1:

We will care about some very special line arrangements.
A line arrangement is said to form a combinatorial projective plane if it furthermore satisfies the following properties:

- Given two points in \mathcal{P}, exactly one line in \mathcal{L} passes through both of them.
- Given two lines in \mathcal{L}, exactly one point in \mathcal{P} is contained in both of them.
- Every point in \mathcal{P} is contained in the same number of lines in \mathcal{L}
- Every line in \mathcal{L} contains the same number of points in \mathcal{P}.
- There are at least two points in \mathcal{P}.

Problem 4.2: Can you construct a combinatorial projective plane with exactly 3 points and 3 lines?
Can you construct a combinatorial projective plane with exactly 7 points and 7 lines?
What other line arrangements can be constructed if in the definition of combinatorial projective planes we allow for P to be only one point or \mathcal{L} to be only one line.

Solution 4.2:

Let us focus on finite combinatorial projective planes. For a finite combinatorial projective plane, let

- N be the number of lines
- t be the number of points
- r be the number of points in a line
- k be the number of lines that contain a single point.

Problem 4.3: Show that $N r=k t$.
Hint: Look at pairs (p, L), where $p \in L$.

Solution 4.3:

Problem 4.4: Show that $k(r-1)=t-1$
Hint: Fix a point and count the number of remaining points in two different ways.
Solution 4.4:

Problem 4.5: Show that $N=1+r(k-1)$.
Hint:Look at the points in one fixed line l_{0}, and regroup the other lines based on which of the points of l_{0} they contain.
Solution 4.5:

Problem 4.6: Show that $r=k$ and $N=t$, i.e. there are the same number of points and lines. Hint: Use the equalities from the previous Problems.
Solution 4.6:

Define $q:=r-1$, this value is called the order of a combinatorial projective plane. Problem 4.7: Show that $N=r^{2}-r+1=q^{2}+q+1$. Which agrees with the number of lines and points that we have computed for the projective planes over \mathbb{F}_{q} in previous classes.
Solution 4.7:

You can use the following fact: Finite fields \mathbb{F}_{q} can only have orders of the form $q=p^{m}$, where p is a prime number and n is a non-negative integer. For any number $q=p^{n}$, there exists a field of q elements.
Problem 4.8:
For which orders have we created combinatorial projective planes in the previous classes? (via the projective planes $\mathbb{P}_{\mathbb{F}_{q}}^{2}$)

Could there be combinatorial projective planes of any order?

Solution 4.8:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

