OLGA RADKO MATH CIRCLE, WINTER 2024: ADVANCED 3

Worksheet 3:

Throughout this worksheet \mathbb{F} is a field.
Remember that the Projective Space $\mathbb{P}_{\mathbb{F}}^{n}$ is defined to be the set of points with coordinates $\left[x_{0}: x_{1}: \ldots: x_{n}\right]$, with $x_{i} \in \mathbb{F}$ not all of them equal to 0 , where two sets of coordinates $\left[x_{0}: \ldots: x_{n}\right]$ and $\left[y_{0}: \ldots y_{n}\right]$ define the same point if there exists a constant $\lambda \in \mathbb{F}$, such that for all i :

$$
x_{i}=\lambda y_{i} .
$$

And a hyperplane in projective space $\mathbb{P}_{\mathbb{F}}^{n}$ is the zero-set of a degree one polynomial, i.e. it is the elements $\left[x_{0}: \ldots: x_{n}\right]$ satisfying the equation:

$$
a_{0} x_{0}+\ldots+a_{n} x_{n}=0
$$

For some fixed $a_{i} \in \mathbb{F}$.
Problem 3.1: Count how many points there are in the following hyperplanes

- $x_{0}=0$ in $\mathbb{P}_{\mathbb{F}_{5}}^{3}$
- $x_{0}-x_{1}+2 x_{2}=0$ in $\mathbb{P}_{\mathbb{F}_{2}}^{4}$
- $3 x_{0}+x_{1}=0$ in $\mathbb{P}_{\mathbb{F}_{11}}^{2}$
- Any hyperplane in $\mathbb{P}_{\mathbb{F}_{q}}^{n}$

Solution 3.1:

A line in projective space $\mathbb{P}_{\mathbb{F}}^{n}$ can be defined by a linear projective parametrization with parameters r, s, i.e. the points in a line are those that have coordinates

$$
\left[p_{0}(r, s): \ldots: p_{n}(r, s)\right]
$$

where p_{i} are homogeneous degree 1 polynomials over \mathbb{F}, and r, s take values in \mathbb{F} other than $r=s=0$, such that the polynomials do not all vanish at the same time.

Alternatively, a line in the projective plane $\mathbb{P}_{\mathbb{F}}^{2}$ can also be defined as the zero-set of a degree one polynomial, i.e. it is the elements $\left[x_{0}: x_{1}: x_{2}\right]$ satisfying the equation:

$$
a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}=0
$$

For some fixed $a_{i} \in \mathbb{F}$.
Problem 3.2: What is the minimum size of a set of points $P \subseteq \mathbb{P}_{\mathbb{F}_{2}}^{2}$, such that every line in $\mathbb{P}_{\mathbb{F}_{2}}^{2}$ passes through at least one point in P ?
Solution 3.2:

Problem 3.3: What is the minimum size of a set of lines $L \subseteq \mathbb{P}_{\mathbb{F}_{3}}^{2}$, such that every point in $\mathbb{P}_{\mathbb{F}_{3}}^{2}$ is contained in at least one line in L ?
Solution 3.3:

Let $\mathbb{P}_{\mathbb{F}}^{2}$ have coordinates $\left[x_{0}: x_{1}: x_{2}\right]$
The dual projective plane $\mathbb{P}_{\mathbb{F}}^{2 \vee}$ is defined as the set of points with coordinates $\left[a_{0}: a_{1}: a_{2}\right]$, with $a_{i} \in \mathbb{F}$ not all of them equal to 0 , where two sets of coordinates $\left[a_{0}: a_{1}: a_{2}\right]$ and $\left[b_{0}: b_{1}: b_{2}\right]$ define the same point if there exists a constant $\lambda \in \mathbb{F}$, such that for all i :

$$
a_{i}=\lambda b_{i}
$$

Here, points in $\mathbb{P}_{\mathbb{F}}^{2 \vee}$ are in bijection with lines in $\mathbb{P}_{\mathbb{F}}^{2}$ via the following map: To a point $\left[a_{0}: a_{1}: a_{2}\right]$ in $\mathbb{P}_{\mathbb{F}}^{2 \vee}$, we associate the line $a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}=0$ in $\mathbb{P}_{\mathbb{F}}^{2}$.

In this way the dual projective plane is a projective plane whose points correspond to lines in the projective plane.
Problem 3.4: Establish a bijection from lines in $\mathbb{P}_{\mathbb{F}}^{2 \vee}$ to points in $\mathbb{P}_{\mathbb{F}}^{2}$.
The lines in the dual projective plane $\mathbb{P}_{\mathbb{F}}^{2 \vee}$, will be the zero-sets of degree one polynomials, i.e. the elements [$a_{0}: a_{1}: a_{2}$] satisfying the equation:

$$
x_{0} a_{0}+x_{1} a_{1}+x_{2} a_{2}=0
$$

For some fixed $x_{i} \in \mathbb{F}$.

Solution 3.4:

Let p be the intersection of two lines l_{1} and l_{2} in $\mathbb{P}_{\mathbb{F}}^{2}$. Let p^{\vee}, l_{1}^{\vee} and l_{2}^{\vee} be the corresponding line and points in $\mathbb{P}_{\mathbb{F}}^{2 \vee}$, via the bijections from the previous problem.
Problem 3.5: Show that the line p^{\vee} contains the points l_{1}^{\vee} and l_{2}^{\vee}.
Solution 3.5:

Problem 3.6: Using the Problems 3.4 and 3.5, explain how Problems 3.2 and 3.3 are the same problem for different fields.
Solution 3.6:

Problem 3.7: What is the minimum size of a set of points $P \subseteq \mathbb{P}_{\mathbb{F}_{p}}^{2}$, such that every line in $\mathbb{P}_{\mathbb{F}_{p}}^{2}$ passes through at least one point in P ?

Solution 3.7:

Problem 3.8: What is the minimum size of a set of points $P \subseteq \mathbb{P}_{\mathbb{F}_{2}}^{3}$, such that every hyperplane in $\mathbb{P}_{\mathbb{F}_{2}}^{3}$ passes through at least one point in P ?

What about for points and hyperplanes in $\mathbb{P}_{\mathbb{F}_{q}}^{3}$?

Solution 3.8:

Problem 3.9: What is the minimum size of a set of points $P \subseteq \mathbb{P}_{\mathbb{F}_{q}}^{n}$, such that every hyperplane in $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ passes through at least one point in P ? Solution 3.9:

Problem 3.10: What is the minimum size of a set of points $P \subseteq \mathbb{P}_{\mathbb{F}_{2}}^{3}$, such that every line in $\mathbb{P}_{\mathbb{F}_{2}}^{3}$ passes through at least one point in P ? What about for points and lines in $\mathbb{P}_{\mathbb{P}_{q}}^{3}$? What about for points and lines in $\mathbb{P}_{\mathbb{F}_{q}}{ }^{q}$?

Solution 3.10:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

