
DETERMINANTS
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ADVANCED 2

1. Warm Up

Before we can learn about determinants, we should go over some basics of linear algebra to ensure we are
all on the same page. If you are already familiar with matrices, row reduction, and matrix multiplication,
feel free to go on to the next section. We will only be working with square matrices, that is, matrices that
have the same number of rows and columns.

Definition 1. A (real)matrix of size n-by-n is a collection of n2 real numbers arranged into n rows/columns.
For example, if n = 3, we may have a matrix like this:1 2 3

4 5 6
7 8 9


A n-by-n matrix represents a function from Rn → Rn, given by matrix multiplication. For the matrix
above, it is a function R3 → R3, where

fM (x, y, z) = M(x, y, z) =

1 2 3
4 5 6
7 8 9

 (x, y, z) =

1x+ 2y + 3z
4x+ 5y + 6z
7x+ 8y + 9z


Problem 1. Let M be a n-by-n matrix. Prove that the function associated to M (the function fM (x) =
Mx on Rn) is linear : that is, fM (x+y) = fM (x)+fM (y) and fM (rx) = rfM (x), for x, y ∈ Rn and r ∈ R.

Problem 2. Prove that if f, g are linear, then f + g, f ◦ g are linear.

It is a theorem (that we will not prove) that every linear function f : Rn → Rn is actually fM for some
n-by-n matrix M . This allows us to figure out how to multiply matrices. Let M,N be n-by-n matrices and
fM , fN be the corresponding functions. As we just showed, fM ◦ fN is linear, so it should be represented
by some matrix, which we will define to be MN . For any x ∈ Rn, fM (fN (x)) = fM (Nx) = M(Nx), and
we define MN(x) to be M(Nx).

Example 1. Let’s calculate

(
1 1
0 1

)
·
(
−1 0
0 3

)
using this approach. Let x = (x1, x2) ∈ R2. By definition,

((
1 1
0 1

)
·
(
−1 0
0 3

))
(x1, x2) =

(
1 0
0 1

)((
−1 0
0 3

)
(x1, x2)

)
=

(
1 1
0 1

)
·
(
−1x1
3x2

)
=

(
−1x1 + 3x2

3x2

)
=

(
−1 3
0 3

)
(x1, x2)

Thus,

(
1 1
0 1

)
·
(
−1 0
0 3

)
=

(
−1 3
0 3

)
.
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Problem 3. Calculate

(
1 2
3 4

)
·
(
5 6
7 8

)
using this approach.

Let’s prove that this definition of matrix multiplication is exactly the same as the one you may know if
you are familiar with linear algebra.

Problem 4. Show that if M,N are n-by-n matrices, then the entry in the i-th row and j-th column of
MN , denoted (MN)ij , can be found by the following formula:

(MN)ij =
n∑

k=1

MikNkj , 1 ≤ i, j ≤ n

One of the most common uses of matrices is solving systems of linear equations. Let’s say we want to
solve 

2x+ 3y + 4z = 4

x− y + 2z = 0

−x+ 4y + z = −7

We can write this as

 2 3 4
1 −1 2
−1 4 1

 (x, y, z) = (4, 0,−7). If we write M =

 2 3 4
1 −1 2
−1 4 1

, then we want

to find (x, y, z) = M−1(4, 0,−7), if such an inverse function exists. Let’s figure out how we can figure
out what M−1 is. We will use the process of row reduction. Think about how you would normally solve
an equation like this. You would probably start by isolating one variable, substituting into the other
equations, and eventually finding numbers for all the variables. Let’s figure out how to do that with
matrices.  2 3 4

1 −1 2
−1 4 1


First, we want the first number in the first row to be 1, so we multiply the first row through by 1

2 . 1 3
2 2

1 −1 2
−1 4 1


Then, we subtract the first row the second row, and add it to the third row, so that all rows other than
the first one have a 0 in the first column.  1 3

2 2
0 −5

2 0
−1 4 1





31 3
2 2

0 −5
2 0

0 11
2 3


Now that the first row starts with a 1 every other row starts with a 0, we move to the second row. We
want the second number in the second row to be 1, so we multiply through by −2

5 .1 3
2 2

0 1 0
0 11

2 3


Then, we subtract 3

2 times the second row from the first, and 11
2 times the second row from the third.1 0 2

0 1 0
0 0 3


Now, finally, we move to the third row. We divide through by 3.1 0 2

0 1 0
0 0 1


and then subtract 2 times the third row from the first.1 0 0

0 1 0
0 0 1


Now, this matrix is called the identity matrix because, if we denote it I, then I(x, y, z) = (x, y, z). If M
had an inverse, we would want M−1 · M = I, because we want M−1 to “undo” M . We’ve shown that
we can manipulate the rows of M to get I, so M must have an inverse! For each step we did, we can
associate a elementary matrix : for example, if we add row 1 to row 2, our elementary matrix is

E =

1 0 0
1 1 0
0 0 1


because the product EM is the matrix M except with the first row added to the second.

Problem 5. Calculate EM in order to verify that E does what we claim it does.

Problem 6. Find the elementary matrices for each operation we did so far.

Now that we have our elementary matrices, we can denote them E1, E2, . . . , Ei, where E1 is the first one
we applied (in this case multiplying row 1 by 1

2). Then, we see that

EiEi−1 . . . E2E1M = I

as we just showed, so surely M−1 = EiEi−1 . . . E2E1!

Problem 7. Explicitly write out M−1 is and verify that it is an inverse to M (ie. multiply M−1 ·M and
see that it is in fact I).

This process is known as row reduction and lets us figure out how to build up matrices in terms of simple
building blocks, our elementary matrices.
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2. Deriving the Determinant

For a permutation σ ∈ Sn (the symmetric group on n objects), recall that we can decompose σ as a
product of transpositions. Then, we can define the sign of σ, denoted sgn(σ), as (−1)m, where m is the
number of transpositions in the decomposition of σ.

Problem 8. Calculate the following expressions:

(1) sgn((123))
(2) sgn((12)(34)(56))
(3) sgn((12)(12))

Recall that a cyclic permutation (also known as a cycle), written (a1a2 . . . ai), is the permutation given by
σ(a1) = a2, σ(a2) = a3, . . . , σ(ai) = a1. For any permutation π ∈ Sn, we can decompose it as a product of
disjoint cycles. Two cycles (a1a2 . . . ai) and (b1b2 . . . bj) are disjoint if they share no elements. Formally,
these cycles are disjoint if ak ̸= bℓ for every 1 ≤ k ≤ i, 1 ≤ ℓ ≤ j. When we learned about the symmetric
group and permutations, we learned that every permutation can be decomposed into a product of disjoint
cycles.

Problem 9. Show that the sign of a cycle (a1a2 . . . ai) is equal to (−1)i−1.

Problem 10. Show that sgn(σ1σ2) = sgn(σ1) sgn(σ2).

Now, using our knowledge of disjoint cycle decomposition, we can now calculate the sign of any permu-
tation.

Example 2. Let σ = [456123] ∈ S6. Remember that when we use square brackets, we mean that
σ(1) = 4, σ(2) = 5, . . . . We can rewrite σ in cycle notation: σ = (14)(25)(36). Then,

sgn(σ) = sgn((14)(25)(36))

= sgn((14)) sgn((25)) sgn((36))

= (−1)1 · (−1)1 · (−1)1

= −1

Now, we can finally define the determinant.

Definition 2. Let M be a square matrix of size n-by-n. We define the determinant of M to be

det(M) :=
∑
σ∈Sn

(sgn(σ))M1,σ(1)M2,σ(2) . . .Mn,σ(n)

Example 3. Let’s look at the case when n = 2. We have M =

(
a b
c d

)
, and we want to find det(M).

We know that S2 = {e, (12)}, so we have

det(M) =
∑
σ∈S2

(sgn(σ))M1,σ(1)M2,σ(2)

= (sgn(e))M1,e(1)M2,e(2) + (sgn((12)))M1,(12)(1)M2,(12)(2)

= (1)M1,1M2,2 + (−1)M1,2M2,1

= ad− bc

You may recognise this formula as the determinant of a 2-by-2 matrix!

If you are more familiar with linear algebra, you may also know that

det

a b c
d e f
g h i

 = adet

(
e f
h i

)
− bdet

(
d f
g i

)
+ cdet

(
d e
g h

)



5

Problem 11. Prove this formula using our definition of the determinant.
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3. Determinant Properties

For this entire section, remembering row reduction and elementary matrices will be very helpful.

Problem 12. Prove that for any two n-by-n matrices M and N , det(MN) = det(M) det(N).

Problem 13. Find an example of two matrices A and B where det(A+B) ̸= det(A) + det(B).

Problem 14. Let M be an n-by-n matrix. Let r ∈ R be any real and let N be an n-by-n matrix where

we multiply the any row of M by r. For example, if n = 2 and M =

(
a b
c d

)
then N could be

(
a b
rc rd

)
or

(
ra rb
c d

)
.

(1) Prove that det(N) = cdet(M).
(2) Prove that det(cM) = cn det(M).

Problem 15. Let M be an n-by-n matrix. Let r ∈ R be any real and let N be an n-by-n matrix where

we add r times any row to any other row. For example, if n = 2 and M =

(
a b
c d

)
then N could be(

a+ rc b+ rd
c d

)
or

(
a b

c+ ra d+ rb

)
. Prove that det(N) = det(M).

Problem 16. Let M be an n-by-n matrix and N be an n-by-n matrix where we swap any two rows of
M . Prove that det(N) = −det(M).
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Problem 17. Let M be an n-by-n matrix and M t the transpose of M , defined by (M t)ij = Mji. For

example, if n = 2 and M =

(
a b
c d

)
then M t is

(
a c
b d

)
. Prove that det(M t) = det(M).

Note that after proving this statement, we will also see that, for example, we can swap columns or rows
without changing the determinant, not just rows.

Problem 18. Let σ ∈ Sn be a permutation and let Mσ be the matrix obtained by taking the columns of
the identity matrix and permuting the columns according to σ. Prove sgn(σ) = det(Mσ).
Hint: what is (Mσ)ij?
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4. Ultra-Hard Mega Difficult Very Challenging Challenge Problems

Problem 19. Prove that det(M ⊗N) = det(M) det(N) = det(N ⊗M), where ⊗ represents the tensor
product of linear transformations (which on the level of matrices is the Kronecker product).

Problem 20. Let F be a field of characteristic 0 and V a vector space over F . Let T (V ) be the tensor
algebra of V . To define it, we start by defining T k(V ) := V ⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸

k times

. There is a canonical

isomorphism T k(V ) ⊗ T ℓ(V ) → T k+ℓ(V ) so we can define T (V ) :=
∞⊕
k=0

T k(V ) with the multiplication

extended linearly to T (V ) ⊗ T (V ) → T (V ) by the above isomorphism. This makes T (V ) is a graded
algebra over F . Define

∧
(V ) := T (V )/⟨v ⊗ v|v ∈ V ⟩. This is the exterior algebra over V , and it inherits

a graded algebra structure from T (V ).

(1) Prove that if V is finite dimensional of dimension n = dim(V ), then
∧k(V ) (defined as the k-th

graded component of
∧
(V )) is trivial when k > n or k < 0.

(2) Prove that dim
(∧k(V )

)
=

(
n
k

)
when 0 ≤ k ≤ n.

(3) Recall that for any finite-dimensional vector space V over a field, dim(V ) = dim(V ∗). Prove that
det ∈ (

∧n V )∗, and as an immediate corollary, that the unique basis of (
∧n V )∗ that takes value

1 on the identity is {det}.

This problem lets us understand the determinant purely algebraically. We proved that the determinant
is the unique up to scalar “alternating n-linear form” on V . We can also understand it analytically:

Problem 21. Let F = R and consider V a finite-dimensional real vector space with dimension n =
dim(V ). We can define a topology on V by pulling back along any isomorphism V ∼= Rn. (Exercise: prove

that these topologies coincide.) We can do something similar for the real vector space Mn(R) ∼= Rn2
, the

vector space of n-by-n real matrices. Let det : Mn(R) → R be the determinant and tr : Mn(R) → R be
the trace (sum of the diagonal entries).

(1) Prove that det, tr are continuous.
(2) Prove that for any M ∈ Mn(R),

lim
t→0

det(I + tM) = tr(M).

This second part is related to the fact that sln(R) = {M ∈ Mn(R)| tr(M) = 0}.
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