
Advanced 2 Fall 2023

Intro to Proofs
Prepared by Mark on January 11, 2024

Part 1:

Problem 1:
We say an integer x is even if x = 2k for some k ∈ Z. We say x is odd if x = 2k + 1 for some k ∈ Z.
Assume that every integer is even or odd, and never both.

• Show that the product of two odd integers is odd.

• Let a, b ∈ Z, a 6= 0. We say a divides b and write a | b if there is a k ∈ Z so that ak = b.
Show that a | b =⇒ a | 2b

• Show that 5n2 + 3n+ 7 is odd for any n ∈ Z.

• Let a, b, c be integers so that a2 + b2 = c2.
Show that one of a, b is even.

• Show that every odd integer is the difference of two squares.

• Prove the assumption in the statement of this problem.
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Problem 2:
Let r ∈ R. We say r is rational if there exist p, q ∈ Z, q 6= 0 so that r = a

b

• Show that
√
2 is irrational.

• Show that the product of two rational numbers must be rational, while the product of irrational
numbers may be rational or irrational. If you claim a number is irrational, provide a proof.
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Problem 3:
Let X = {x ∈ Z

∣∣ n ≥ 2}. For k ≥ 2, define Xk = {kx
∣∣ x ∈ X}.

What is X − (X2 ∪X3 ∪X4 ∪ ...)? Prove your claim.
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Problem 4:
Show that there are infinitely may primes.
You may use the fact that every integer has a prime factorization.
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Problem 5:
For a set X, define its diagonal as D(X) = {(x, x) ∈ X ×X

∣∣ x ∈ X}.

An undirected graph G is an ordered pair (V,E), where V is a set, and E ⊂ V × V satisfies
(a, b) ∈ E ⇐⇒ (b, a) ∈ E and E ∩ D(X) = ∅.
The elements of V are called vertices; the elements of E are called edges.

• Make sense of the conditions on E.

• The degree of a vertex a is the number of edges connected to that vertex.
We’ll denote this as d(a). Write a formal definition of this function using set-builder notation
and the definitions above. Recall that |X| denotes the size of a set X.

• There are 9 people at a party. Show that they cannot each have 3 friends.
Friendship is always mutual.
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Problem 6:
Let f be a function from a set X to a set Y . We say f is injective if f(x) = f(y) =⇒ x = y.
We say f is surjective if for all y ∈ Y there exists an x ∈ X so that f(x) = y.
Let A,B,C be sets, and let f : A → B, g : B → C be functions. Let h = g ◦ f .

• Show that if h is injective, f must be injective and g may not be injective.
• Show that if h is surjective, g must be surjective and f may not be surjective.
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Problem 7:
Let X = {1, 2, ..., n} for some n ≥ 2. Let k ∈ Z so that 1 ≤ k ≤ n− 1.
Let E = {Y ⊂ X

∣∣ |Y | = k}, E1 = {Y ∈ E
∣∣ 1 ∈ Y }, and E2 = {Y ∈ E

∣∣ 1 /∈ Y }

• Show that {E1, E2} is a partition of E.
In other words, show that ∅ 6= E1, ∅ 6= E2, E1 ∪ E2 = E, and E1 ∩ E2 = ∅.
Hint: What does this mean in English?

• Compute |E1|, |E2|, and |E|.
Recall that a set of size n has

(
n
k

)
subsets of size k.

• Conclude that for any n and k satisfying the conditions above,(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
• For t ∈ N, show that

(
2t
t

)
is even.
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Theorem 8: The Division Algorithm
Given two integers a, b, we can find two integers q, r, where 0 ≤ r < b and a = qb+ r.
In other words, we can divide a by b to get q remainder r.

Problem 9:
Let x, y ∈ N be natural numbers. Consider the set S = {ax+ by

∣∣ a, b ∈ Z, ax+ by > 0}.
The well-ordering principle states that every nonempty subset of the natural numbers has a least
element.

• Show that S has a least element. Call it d.

• Let z = gcd(x, y). Show that z divides d.

• Show that d divides x and d divides y.

• Prove or disprove gcd(x, y) ∈ S.
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Problem 10:
• Let f : X → Y be an injective function. Show that for any two functions g : Z → X and
h : Z → X, if f ◦ g = f ◦ h from Z to Y then g = h from Z to X.
By definition, functions are equal if they agree on every input in their domain.
Hint: This is a one-line proof.

• Let f : X → Y be a surjective function. Show that for any two functions g : Y → W and
h : Y → W , if g ◦ f = h ◦ f =⇒ g = h.

? Let f : X → Y be a function where for any set Z and functions g : Z → X and h : Z → X,
f ◦ g = f ◦ h =⇒ g = h. Show that f is injective.

? Let f : X → Y be a function where for any set W and functions g : Y → W and h : Y → W ,
g ◦ f = h ◦ f =⇒ g = h. Show f is surjective.
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Problem 11:
In this problem we prove the binomial theorem: for a, b ∈ R and n ∈ Z+, we have

(a+ b)n =

n∑
k=0

(
n

k

)
akbN−k

In the proof below, we let a and b be arbitrary numbers.

• Check that this formula works for n = 0. Also, check a few small n to get a sense of what’s
going on.

• Let N ∈ N. Suppose we know that for a specific value of N ,

(a+ b)N =

N∑
k=0

(
N

k

)
akbN−k

Now, show that this formula also works for N + 1.
• Conclude that this formula works for all a, b ∈ R and n ∈ Z+.
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Problem 12:
A relation on a set X is an R ⊂ X ×X.

• We say R is reflexive if (x, x) ∈ R for all x ∈ X.
• We say R is symmetric if (x, y) ∈ R =⇒ (y, x) ∈ R.
• We say R is transitive if (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R.
• We say R is an equivalence relation if it is reflexive, symmetric, and transitive.

Say we have a set X and an equivalence relation R.
The equivalence class of an element x ∈ X is the set {y ∈ X

∣∣ (x, y) ∈ R}.

Let R be an equivalence relation on a set X.
Show that the set of equivalence classes is a partition of X.
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Problem 13:
Show that there exist two positive irrational numbers a and b so that ab is rational.

Problem 14:
Show that there are infinitely many primes.

Problem 15:
Show that the following holds for any planar graph:

vertices − edges + faces = 2

Hint: If you don’t know what these words mean, ask an instructor.

12



Problem 16:
Consider a rectangular chocolate bar of arbitrary size.
What is the minimum number of breaks you need to make to seperate all its pieces?

Problem 17:
Four roads are on a plane, each a straight line. They are positioned so that no two are parallel and
no three intersect at the same point.
A traveller walks along each road at a constant speed. Their speeds may not be the same. We know
that traveller A has met traveler B, C, and D, and that B has met C and D (and A).
Show that C and D must also have met.
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Part 2: Harder problems

Problem 18:
Say we have an n-gon with non-intersecting edges.
What is the minimum number of vertices from which it is possible to see every point inside the
polygon?

Problem 19:
Show that a fifteen puzzle where the 14 and 15 tiles have been exchanged may not be solved with
legal moves.

Problem 20:
What is the probability that two randomly chosen positive integers are relatively prime?
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