Intro to Proofs

Prepared by Mark on January 11, 2024

Part 1:

Problem 1:

We say an integer x is even if $x=2 k$ for some $k \in \mathbb{Z}$. We say x is odd if $x=2 k+1$ for some $k \in \mathbb{Z}$. Assume that every integer is even or odd, and never both.

- Show that the product of two odd integers is odd.
- Let $a, b \in \mathbb{Z}, a \neq 0$. We say a divides b and write $a \mid b$ if there is a $k \in \mathbb{Z}$ so that $a k=b$. Show that $a|b \Longrightarrow a| 2 b$
- Show that $5 n^{2}+3 n+7$ is odd for any $n \in \mathbb{Z}$.
- Let a, b, c be integers so that $a^{2}+b^{2}=c^{2}$. Show that one of a, b is even.
- Show that every odd integer is the difference of two squares.
- Prove the assumption in the statement of this problem.

Problem 2:

Let $r \in \mathbb{R}$. We say r is rational if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r=\frac{a}{b}$

- Show that $\sqrt{2}$ is irrational.
- Show that the product of two rational numbers must be rational, while the product of irrational numbers may be rational or irrational. If you claim a number is irrational, provide a proof.

Problem 3:
Let $X=\{x \in \mathbb{Z} \mid n \geq 2\}$. For $k \geq 2$, define $X_{k}=\{k x \mid x \in X\}$.
What is $X-\left(X_{2} \cup X_{3} \cup X_{4} \cup \ldots\right)$? Prove your claim.

Problem 4:

Show that there are infinitely may primes.
You may use the fact that every integer has a prime factorization.

Problem 5:

For a set X, define its diagonal as $\mathrm{D}(X)=\{(x, x) \in X \times X \mid x \in X\}$.
An undirected graph G is an ordered pair (V, E), where V is a set, and $E \subset V \times V$ satisfies $(a, b) \in E \Longleftrightarrow(b, a) \in E$ and $E \cap \mathrm{D}(X)=\varnothing$.
The elements of V are called vertices; the elements of E are called edges.

- Make sense of the conditions on E.
- The degree of a vertex a is the number of edges connected to that vertex. We'll denote this as $d(a)$. Write a formal definition of this function using set-builder notation and the definitions above. Recall that $|X|$ denotes the size of a set X.
- There are 9 people at a party. Show that they cannot each have 3 friends. Friendship is always mutual.

Problem 6:

Let f be a function from a set X to a set Y. We say f is injective if $f(x)=f(y) \Longrightarrow x=y$.
We say f is surjective if for all $y \in Y$ there exists an $x \in X$ so that $f(x)=y$.
Let A, B, C be sets, and let $f: A \rightarrow B, g: B \rightarrow C$ be functions. Let $h=g \circ f$.

- Show that if h is injective, f must be injective and g may not be injective.
- Show that if h is surjective, g must be surjective and f may not be surjective.

Problem 7:

Let $X=\{1,2, \ldots, n\}$ for some $n \geq 2$. Let $k \in \mathbb{Z}$ so that $1 \leq k \leq n-1$.
Let $E=\{Y \subset X| | Y \mid=k\}, E_{1}=\{Y \in E \mid 1 \in Y\}$, and $E_{2}=\{Y \in E \mid 1 \notin Y\}$

- Show that $\left\{E_{1}, E_{2}\right\}$ is a partition of E.

In other words, show that $\varnothing \neq E_{1}, \varnothing \neq E_{2}, E_{1} \cup E_{2}=E$, and $E_{1} \cap E_{2}=\varnothing$. Hint: What does this mean in English?

- Compute $\left|E_{1}\right|,\left|E_{2}\right|$, and $|E|$.

Recall that a set of size n has $\binom{n}{k}$ subsets of size k.

- Conclude that for any n and k satisfying the conditions above,

$$
\binom{n-1}{k}+\binom{n-1}{k-1}=\binom{n}{k}
$$

- For $t \in \mathbb{N}$, show that $\binom{2 t}{t}$ is even.

Theorem 8: The Division Algorithm

Given two integers a, b, we can find two integers q, r, where $0 \leq r<b$ and $a=q b+r$. In other words, we can divide a by b to get q remainder r.

Problem 9:

Let $x, y \in \mathbb{N}$ be natural numbers. Consider the set $S=\{a x+b y \mid a, b \in \mathbb{Z}, a x+b y>0\}$.
The well-ordering principle states that every nonempty subset of the natural numbers has a least element.

- Show that S has a least element. Call it d.
- Let $z=\operatorname{gcd}(x, y)$. Show that z divides d.
- Show that d divides x and d divides y.
- Prove or disprove $\operatorname{gcd}(x, y) \in S$.

Problem 10:

- Let $f: X \rightarrow Y$ be an injective function. Show that for any two functions $g: Z \rightarrow X$ and $h: Z \rightarrow X$, if $f \circ g=f \circ h$ from Z to Y then $g=h$ from Z to X.
By definition, functions are equal if they agree on every input in their domain. Hint: This is a one-line proof.
- Let $f: X \rightarrow Y$ be a surjective function. Show that for any two functions $g: Y \rightarrow W$ and $h: Y \rightarrow W$, if $g \circ f=h \circ f \Longrightarrow g=h$.
\star Let $f: X \rightarrow Y$ be a function where for any set Z and functions $g: Z \rightarrow X$ and $h: Z \rightarrow X$, $f \circ g=f \circ h \Longrightarrow g=h$. Show that f is injective.
\star Let $f: X \rightarrow Y$ be a function where for any set W and functions $g: Y \rightarrow W$ and $h: Y \rightarrow W$, $g \circ f=h \circ f \Longrightarrow g=h$. Show f is surjective.

Problem 11:

In this problem we prove the binomial theorem: for $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^{+}$, we have

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{N-k}
$$

In the proof below, we let a and b be arbitrary numbers.

- Check that this formula works for $n=0$. Also, check a few small n to get a sense of what's going on.
- Let $N \in \mathbb{N}$. Suppose we know that for a specific value of N,

$$
(a+b)^{N}=\sum_{k=0}^{N}\binom{N}{k} a^{k} b^{N-k}
$$

Now, show that this formula also works for $N+1$.

- Conclude that this formula works for all $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^{+}$.

Problem 12:

A relation on a set X is an $R \subset X \times X$.

- We say R is reflexive if $(x, x) \in R$ for all $x \in X$.
- We say R is symmetric if $(x, y) \in R \Longrightarrow(y, x) \in R$.
- We say R is transitive if $(x, y) \in R$ and $(y, z) \in R$ imply $(x, z) \in R$.
- We say R is an equivalence relation if it is reflexive, symmetric, and transitive.

Say we have a set X and an equivalence relation R.
The equivalence class of an element $x \in X$ is the set $\{y \in X \mid(x, y) \in R\}$.
Let R be an equivalence relation on a set X.
Show that the set of equivalence classes is a partition of X.

Problem 13:
Show that there exist two positive irrational numbers a and b so that a^{b} is rational.

Problem 14:

Show that there are infinitely many primes.

Problem 15:

Show that the following holds for any planar graph:

$$
\text { vertices }- \text { edges }+ \text { faces }=2
$$

Hint: If you don't know what these words mean, ask an instructor.

Problem 16:

Consider a rectangular chocolate bar of arbitrary size.
What is the minimum number of breaks you need to make to seperate all its pieces?

Problem 17:

Four roads are on a plane, each a straight line. They are positioned so that no two are parallel and no three intersect at the same point.
A traveller walks along each road at a constant speed. Their speeds may not be the same. We know that traveller A has met traveler B, C, and D, and that B has met C and D (and A).
Show that C and D must also have met.

Part 2: Harder problems

Problem 18:

Say we have an n-gon with non-intersecting edges.
What is the minimum number of vertices from which it is possible to see every point inside the polygon?

Problem 19:

Show that a fifteen puzzle where the 14 and 15 tiles have been exchanged may not be solved with legal moves.

Problem 20:

What is the probability that two randomly chosen positive integers are relatively prime?

