Worksheet 2:

Throughout this worksheet \mathbb{F} is a field.

Remember that the Projective Space $\mathbb{P}^n_\mathbb{F}$ is defined to be the set of points with coordinates $[x_0 : x_1 : \ldots : x_n]$, with $x_i \in \mathbb{F}$ not all of them equal to 0, where two sets of coordinates $[x_0 : \ldots : x_n]$ and $[y_0 : \ldots y_n]$ define the same point if there exists a constant $\lambda \in \mathbb{F}$, such that for all i:

$$x_i = \lambda y_i.$$

Problem 2.1: Count how many points there are in $\mathbb{P}^n_\mathbb{F}$ in two different ways:

- Decompose into disjoint projective spaces of lower dimension, by separating in cases where a coordinate x_i is zero or non-zero.

- Notice that the possible coordinates of projective plane are $\mathbb{F}^{n+1} \setminus (0, \ldots, 0)$, and count how many different points of \mathbb{F}^{n+1} represent the same point of projective space.

Solution 2.1:
A line in projective plane \mathbb{P}^n_F can be defined by a linear projective parametrization with parameters r, s, i.e. the points in a line are those that have coordinates

$$[p_0(r, s) : \ldots : p_n(r, s)]$$

where p_i are homogeneous degree 1 polynomials over \mathbb{F}, and r, s take values in \mathbb{F} other than $r = s = 0$, such that the polynomials do not all vanish at the same time.

Problem 2.2: Determine the points of the following lines:

1. $[r + s : r : s]$ in $\mathbb{P}^2_{\mathbb{F}_3}$
2. $[r + s : r : s : r - s]$ in $\mathbb{P}^3_{\mathbb{F}_3}$
3. $[r + s : r : s : r - s : 0]$ in $\mathbb{P}^4_{\mathbb{F}_3}$
4. $[r + s : r : s]$ in $\mathbb{P}^2_{\mathbb{F}_5}$

Can you see how many points does a line in $\mathbb{P}^n_{\mathbb{F}_q}$ have?

Solution 2.2:
A hyperplane in projective space \(\mathbb{P}^n_F \) is the zero-set of a degree one polynomial, i.e. it is the elements \([x_0 : \ldots : x_n]\) satisfying the equation:

\[
a_0x_0 + \ldots + a_nx_n = 0,
\]

For some fixed \(a_i \in F\).

Problem 2.3: Find all the points and give a parametrization for the lines that are given by the intersections of the following planes:

(1) \(x_0 = 0\) and \(x_1 = 0\) in \(\mathbb{P}^3_{\mathbb{F}_2}\)

(2) \(x_0 + x_1 = 0\) and \(x_2 = 0\) in \(\mathbb{P}^3_{\mathbb{F}_5}\)

(3) \(x_0 - 2x_1 = 0\) and \(x_2 - x_1 + 3x_3 = 0\) in \(\mathbb{P}^3_{\mathbb{F}_7}\)

Solution 2.3:
In general a d-dimensional projective space in \mathbb{P}_F^n can be defined as a linear projective parametrization, with parameters r_0, \ldots, r_d, i.e. the points are those that have coordinates:

$$[p_0(r_0, \ldots, r_d) : \ldots : p_n(r_0, \ldots, r_d)]$$

Problem 2.4: Determine the dimension and find a parametrization for the following projective spaces:

1. $x_1 = 0$ in $\mathbb{P}_{\mathbb{F}_2}^2$
2. $x_0 = 0$ in $\mathbb{P}_{\mathbb{F}_2}^4$
3. The intersection of $x_1 + x_3 = 0$ and $x_2 - x_0 = 0$ in $\mathbb{P}_{\mathbb{F}_3}^3$
4. The intersection of $x_0 = 0$, $x_1 = 0$, $x_2 = 0$ and $x_0 - x_1 + x_2 = 0$ in $\mathbb{P}_{\mathbb{F}_7}^5$

Solution 2.4:
Problem 2.5: What is the dimension of a hyperplane in \mathbb{P}^n_k?
What is the dimension of the intersection of two different hyperplanes in \mathbb{P}^n_k?
What are the possible dimensions of the intersection a line and a hyperplane in \mathbb{P}^n_k?
In general what are the possible dimensions of the intersection of a d-dimensional and an r-dimensional projective space inside of \mathbb{P}^n_k?
Solution 2.5:
Problem 2.6: How many different lines are there in $\mathbb{P}^3_{\mathbb{F}_q}$?

How many different hyperplanes are there in $\mathbb{P}^3_{\mathbb{F}_q}$?

How many different hyperplanes are there in $\mathbb{P}^n_{\mathbb{F}_q}$?

Solution 2.6:
\(\mathbb{F}^n \) is also called the *affine space* \(\mathbb{A}_F^n \). This can be regarded as a subset of \(\mathbb{P}_F^n \), by setting the first coordinate \(x_0 = 1 \).

Then lines, planes, hyperplanes and lower-dimensional affine spaces in \(\mathbb{A}_F^n \) can be regarded as the restrictions of lines, planes, hyperplanes and lower dimensional projective spaces in \(\mathbb{P}_F^n \).

Problem 2.7: Do two lines in \(\mathbb{A}_F^2 \) always intersect?

At how many points can two planes in \(\mathbb{A}_F^3 \) intersect?

Solution 2.7:
Problem 2.8: In general in how many points can two hyperplanes intersect in $\mathbb{A}^p_{\mathbb{F}_q}$
Solution 2.8:
Problem 2.9: How many different planes through a point are there in $A^3_{\mathbb{F}_q}$?

Can you notice any relation between this quantity and the number of lines in $P^3_{\mathbb{F}_q}$?

Solution 2.9:
UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu

UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu