OLGA RADKO MATH CIRCLE, WINTER 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet 2:

Throughout this worksheet \mathbb{F} is a field.
Remember that the Projective Space $\mathbb{P}_{\mathbb{F}}^{n}$ is defined to be the set of points with coordinates $\left[x_{0}: x_{1}: \ldots: x_{n}\right]$, with $x_{i} \in \mathbb{F}$ not all of them equal to 0 , where two sets of coordinates $\left[x_{0}: \ldots: x_{n}\right]$ and $\left[y_{0}: \ldots y_{n}\right]$ define the same point if there exists a constant $\lambda \in \mathbb{F}$, such that for all i :

$$
x_{i}=\lambda y_{i} .
$$

Problem 2.1: Count how many points there are in $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ in two different ways:

- Decompose into disjoint projective spaces of lower dimension, by separating in cases where a coordinate x_{i} is zero or non-zero.
- Notice that the possible coordinates of projective plane are $\mathbb{F}^{n+1} \backslash(0, \ldots, 0)$, and count how many different points of \mathbb{F}^{n+1} represent the same point of projective space.
Solution 2.1:

A line in projective plane $\mathbb{P}_{\mathbb{F}}^{n}$ can be defined by a linear projective parametrization with parameters r, s, i.e. the points in a line are those that have coordinates

$$
\left[p_{0}(r, s): \ldots: p_{n}(r, s)\right]
$$

where p_{i} are homogeneous degree 1 polynomials over \mathbb{F}, and r, s take values in \mathbb{F} other than $r=s=0$, such that the polynomials do not all vanish at the same time.
Problem 2.2: Determine the points of the following lines:
(1) $[r+s: r: s]$ in $\mathbb{P}_{\mathbb{F}_{3}}^{2}$
(2) $[r+s: r: s: r-s]$ in $\mathbb{P}_{\mathbb{F}_{3}}^{3}$
(3) $[r+s: r: s: r-s: 0]$ in $\mathbb{P}_{\mathbb{F}_{3}}^{4}$
(4) $[r+s: r: s]$ in $\mathbb{P}_{\mathbb{F}_{5}}^{2}$

Can you see how many points does a line in $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ have?

Solution 2.2:

A hyperplane in projective space $\mathbb{P}_{\mathbb{F}}^{n}$ is the zero-set of a degree one polynomial, i.e. it is the elements $\left[x_{0}: \ldots: x_{n}\right]$ satisfying the equation:

$$
a_{0} x_{0}+\ldots+a_{n} x_{n}=0
$$

For some fixed $a_{i} \in \mathbb{F}$.
Problem 2.3: Find all the points and give a parametrization for the lines that are given by the intersections of the following planes:
(1) $x_{0}=0$ and $x_{1}=0$ in $\mathbb{P}_{\mathbb{F}_{2}}^{3}$
(2) $x_{0}+x_{1}=0$ and $x_{2}=0$ in $\mathbb{P}_{\mathbb{F}_{5}}^{3}$
(3) $x_{0}-2 x_{1}=0$ and $x_{2}-x_{1}+3 x_{3}=0$ in $\mathbb{P}_{\mathbb{F}_{7}}^{3}$

Solution 2.3:

In general a d-dimensional projective space in $\mathbb{P}_{\mathbb{F}}^{n}$ can be defined as a linear projective parametrization, with parameters r_{0}, \ldots, r_{d}, i.e. the points are those that have coordinates:

$$
\left.\left[p_{0}\left(r_{0}, \ldots, r_{d}\right): \ldots: p_{n}\left(r_{0}, \ldots, r_{d}\right)\right)\right]
$$

Problem 2.4: Determine the dimension and find a parametrization for the following projective spaces:
(1) $x_{1}=0$ in $\mathbb{P}_{\mathbb{F}_{2}}^{2}$
(2) $x_{0}=0$ in $\mathbb{P}_{\mathbb{F}_{2}}^{4}$
(3) The intersection of $x_{1}+x_{3}=0$ and $x_{2}-x_{0}=0$ in $\mathbb{P}_{\mathbb{F}_{3}}^{3}$
(4) The intersection of $x_{0}=0, x_{1}=0, x_{2}=0$ and $x_{0}-x_{1}+x_{2}=0$ in $\mathbb{P}_{\mathbb{F}_{7}}^{5}$

Solution 2.4:

Problem 2.5: What is the dimension of a hyperplane in $\mathbb{P}_{\mathbb{F}}^{n}$?
What is the dimension of the intersection of two different hyperplanes in $\mathbb{P}_{\mathbb{F}}^{n}$?
What are the possible dimensions of the intersection a line and a hyperplane in $\mathbb{P}_{\mathbb{F}}^{3}$?
In general what are the possible dimensions of the intersection of a d-dimensional and an r-dimensional projective space inside of $\mathbb{P}_{\mathbb{F}}^{n}$?
Solution 2.5:

Problem 2.6: How many different lines are there in $\mathbb{P}_{\mathbb{F}_{q}}^{3}$?
How many different hyperplanes are there in $\mathbb{P}_{\mathbb{F}_{q}}^{3}$?
How many different hyperplanes are there in $\mathbb{P}_{\mathbb{F}_{q}}{ }^{q}$?

Solution 2.6:

\mathbb{F}^{n} is also called the affine space $\mathbb{A}_{\mathbb{F}}^{n}$. This can be regarded as a subset of $\mathbb{P}_{\mathbb{F}}^{n}$, by setting the first coordinate $x_{0}=1$. Then lines, planes, hyperplanes and lower-dimensional affine spaces in $\mathbb{A}_{\mathbb{F}}^{n}$ can be regarded as the restrictions of lines, planes, hyperplanes and lower dimensional projective spaces in $\mathbb{P}_{\mathbb{F}}^{n}$
Problem 2.7: Do two lines in $\mathbb{A}_{\mathbb{F}}^{2}$ always intersect?
At how many points can two planes in $\mathbb{A}_{\mathbb{F}_{q}}^{3}$ intersect?

Solution 2.7:

Problem 2.8: In general in how many points can two hyperplanes intersect in $\mathbb{A}_{\mathbb{F}_{q}}^{n}$ Solution 2.8:

Problem 2.9: How many different planes through a point are there in $\mathbb{A}_{\mathbb{F}_{q}}^{4}$? Can you notice any relation between this quantity and the number of lines in $\mathbb{P}_{\mathbb{F}_{q}}^{3}$? Solution 2.9:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

