OLGA RADKO MATH CIRCLE, WINTER 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet 2:

Throughout this worksheet $\mathbb F$ is a field.

Remember that the *Projective Space* $\mathbb{P}^n_{\mathbb{F}}$ is defined to be the set of points with coordinates $[x_0 : x_1 : \ldots : x_n]$, with $x_i \in \mathbb{F}$ not all of them equal to 0, where two sets of coordinates $[x_0 : \ldots : x_n]$ and $[y_0 : \ldots : y_n]$ define the same point if there exists a constant $\lambda \in \mathbb{F}$, such that for all *i*:

$$x_i = \lambda y_i.$$

Problem 2.1: Count how many points there are in $\mathbb{P}^n_{\mathbb{F}_q}$ in two different ways:

- Decompose into disjoint projective spaces of lower dimension, by separating in cases where a coordinate x_i is zero or non-zero.
- Notice that the possible coordinates of projective plane are $\mathbb{F}^{n+1} \setminus (0, \ldots, 0)$, and count how many different points of \mathbb{F}^{n+1} represent the same point of projective space.

Solution 2.1:

A line in projective plane $\mathbb{P}_{\mathbb{F}}^n$ can be defined by a linear projective parametrization with parameters r, s, i.e. the points in a line are those that have coordinates

$$[p_0(r,s):\ldots:p_n(r,s)]$$

where p_i are homogeneous degree 1 polynomials over \mathbb{F} , and r, s take values in \mathbb{F} other than r = s = 0, such that the polynomials do not all vanish at the same time.

Problem 2.2: Determine the points of the following lines:

- (1) [r+s:r:s] in $\mathbb{P}^2_{\mathbb{F}_3}$ (2) [r+s:r:s:r-s] in $\mathbb{P}^3_{\mathbb{F}_3}$ (3) [r+s:r:s:r-s:0] in $\mathbb{P}^4_{\mathbb{F}_3}$
- (4) [r+s:r:s] in $\mathbb{P}^2_{\mathbb{F}_5}$

Can you see how many points does a line in $\mathbb{P}^n_{\mathbb{F}_q}$ have? Solution 2.2:

 $\mathbf{2}$

A hyperplane in projective space $\mathbb{P}^n_{\mathbb{F}}$ is the zero-set of a degree one polynomial, i.e. it is the elements $[x_0:\ldots:x_n]$ satisfying the equation:

$$a_0x_0 + \ldots + a_nx_n = 0,$$

For some fixed $a_i \in \mathbb{F}$.

Problem 2.3: Find all the points and give a parametrization for the lines that are given by the intersections of the following planes:

(1)
$$x_0 = 0$$
 and $x_1 = 0$ in $\mathbb{P}^3_{\mathbb{F}_2}$

(2)
$$x_0 + x_1 = 0$$
 and $x_2 = 0$ in $\mathbb{P}^3_{\mathbb{F}_r}$

(3) $x_0 - 2x_1 = 0$ and $x_2 = 0$ in $\mathbb{P}^3_{\mathbb{F}_7}$ (3) $x_0 - 2x_1 = 0$ and $x_2 - x_1 + 3x_3 = 0$ in $\mathbb{P}^3_{\mathbb{F}_7}$

Solution 2.3:

In general a d-dimensional projective space in $\mathbb{P}^n_{\mathbb{F}}$ can be defined as a linear projective parametrization, with parameters r_0, \ldots, r_d , i.e. the points are those that have coordinates:

$$[p_0(r_0, \ldots, r_d) : \ldots : p_n(r_0, \ldots, r_d))]$$

Problem 2.4: Determine the dimension and find a parametrization for the following projective spaces:

- (1) $x_1 = 0$ in $\mathbb{P}^2_{\mathbb{F}_2}$ (2) $x_0 = 0$ in $\mathbb{P}^4_{\mathbb{F}_2}$ (3) The intersection of $x_1 + x_3 = 0$ and $x_2 x_0 = 0$ in $\mathbb{P}^3_{\mathbb{F}_3}$ (4) The intersection of $x_0 = 0$, $x_1 = 0$, $x_2 = 0$ and $x_0 x_1 + x_2 = 0$ in $\mathbb{P}^5_{\mathbb{F}_7}$

Solution 2.4:

Problem 2.5: What is the dimension of a hyperplane in $\mathbb{P}^n_{\mathbb{F}}$?

What is the dimension of the intersection of two different hyperplanes in $\mathbb{P}^n_{\mathbb{F}}$?

What are the possible dimensions of the intersection a line and a hyperplane in $\mathbb{P}^3_{\mathbb{F}}$?

In general what are the possible dimensions of the intersection of a *d*-dimensional and an *r*-dimensional projective space inside of $\mathbb{P}^n_{\mathbb{F}}$?

Solution 2.5:

Problem 2.6: How many different lines are there in $\mathbb{P}^3_{\mathbb{F}_q}$? How many different hyperplanes are there in $\mathbb{P}^3_{\mathbb{F}_q}$? How many different hyperplanes are there in $\mathbb{P}^n_{\mathbb{F}_q}$? Solution 2.6:

 \mathbb{F}^n is also called the *affine space* $\mathbb{A}^n_{\mathbb{F}}$. This can be regarded as a subset of $\mathbb{P}^n_{\mathbb{F}}$, by setting the first coordinate $x_0 = 1$. Then lines, planes, hyperplanes and lower-dimensional affine spaces in $\mathbb{A}^{\hat{n}}_{\mathbb{F}}$ can be regarded as the restrictions of lines, planes, hyperplanes and lower dimensional projective spaces in $\mathbb{P}^n_{\mathbb{F}}$

Problem 2.7: Do two lines in $\mathbb{A}^2_{\mathbb{F}}$ always intersect? At how many points can two planes in $\mathbb{A}^3_{\mathbb{F}_q}$ intersect? Solution 2.7:

Problem 2.8: In general in how many points can two hyperplanes intersect in $\mathbb{A}^n_{\mathbb{F}_q}$ Solution 2.8:

Problem 2.9: How many different planes through a point are there in $\mathbb{A}^4_{\mathbb{F}_q}$? Can you notice any relation between this quantity and the number of lines in $\mathbb{P}^3_{\mathbb{F}_q}$? Solution 2.9:

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA. *Email address:* fzamora@math.princeton.edu

UCLA MATHEMATICS DEPARTMENT, Box 951555, Los Angeles, CA 90095-1555, USA. $\mathit{Email}\ address:\ \texttt{jmoraga@math.ucla.edu}$