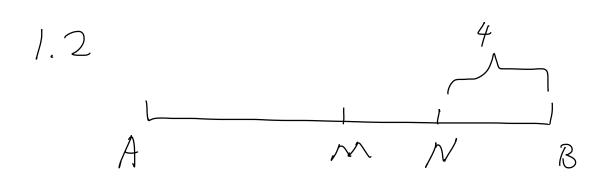
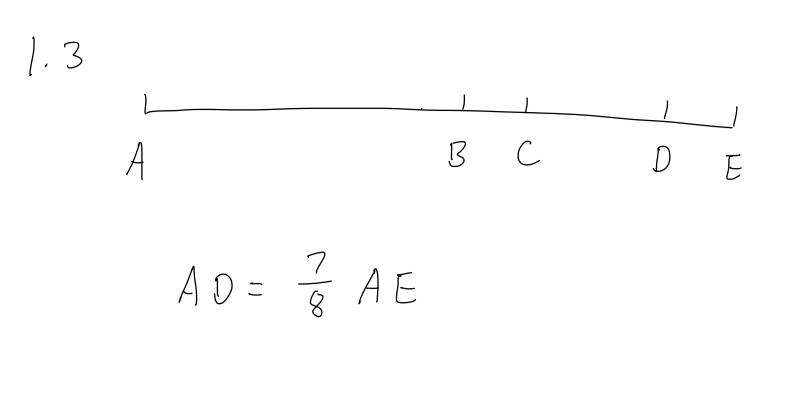
Euclidean Geometry

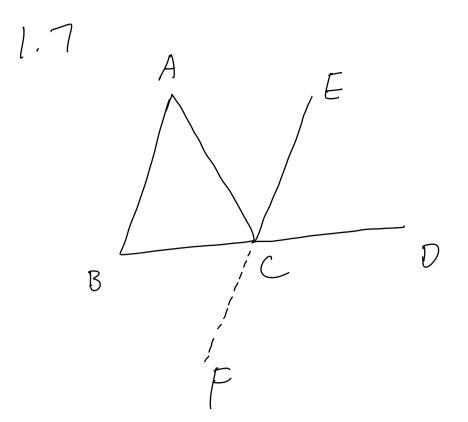
Sunday, January 7, 2024 8:02 AM





1.4 $\left| \right|$

1.6 If
$$\angle A + \angle B \neq 180^{\circ}$$
, then $\angle L_1$ and $\angle L_2$ are not parallel



Since AB//CE, ZBAC+ZACF=180° But since $\angle ACF + \angle ACE = 180^{\circ}$ <ACF + <ACE = < BAC + < ACF
</pre> So ZACE = ZBAC

2

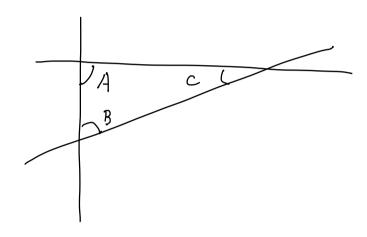
Since AB//CE, ∠ABC+∠BCE=180° Since ∠ BCE+ ∠ECD = 180°, LABC+LBCE=LBCE+LECD ZECD So ZABC

1.9

30°, 60°, 90°

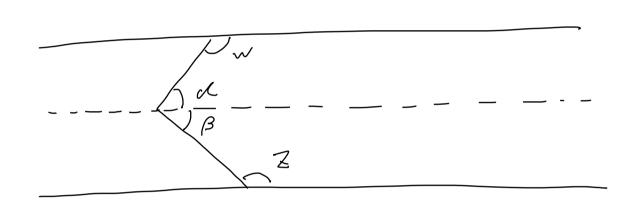
1.10

If the two lines are not parallel they intersect and thus form a triangle



We have $\angle A + \angle B = /80^{\circ} - \angle C < 180^{\circ}$

1.11

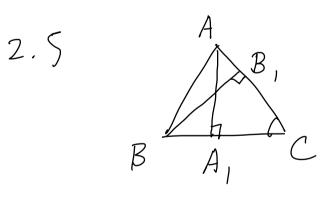


 $\alpha = 180^{\circ} - 135^{\circ} = 45^{\circ}$ $\beta = (80^{\circ} - 147^{\circ} = 33^{\circ})$ $\chi = \alpha + \beta = 78^{\circ}$

1.12 Let
$$\angle A''AB = \pi$$
, $\angle BCC'' = \gamma$
 $2x + 2\gamma = 180^{\circ}$

$$\angle ABC = x + y = 90^{\circ}$$

2.5
$$\frac{AC}{AB} = \frac{AB}{AD} \implies AB^2 = 4 \times 9$$
$$AB = 6$$



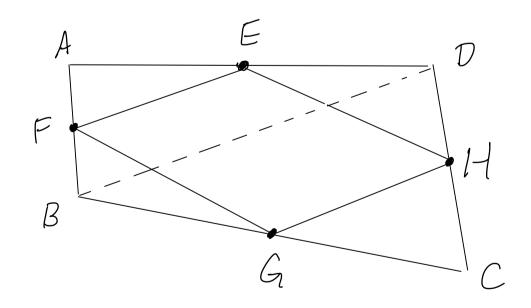
 $\triangle AA, C \sim \triangle BB, C$

$$\frac{A,C}{B,C} = \frac{AC}{BC} \implies A, C \cdot BC = B, C \cdot AC$$

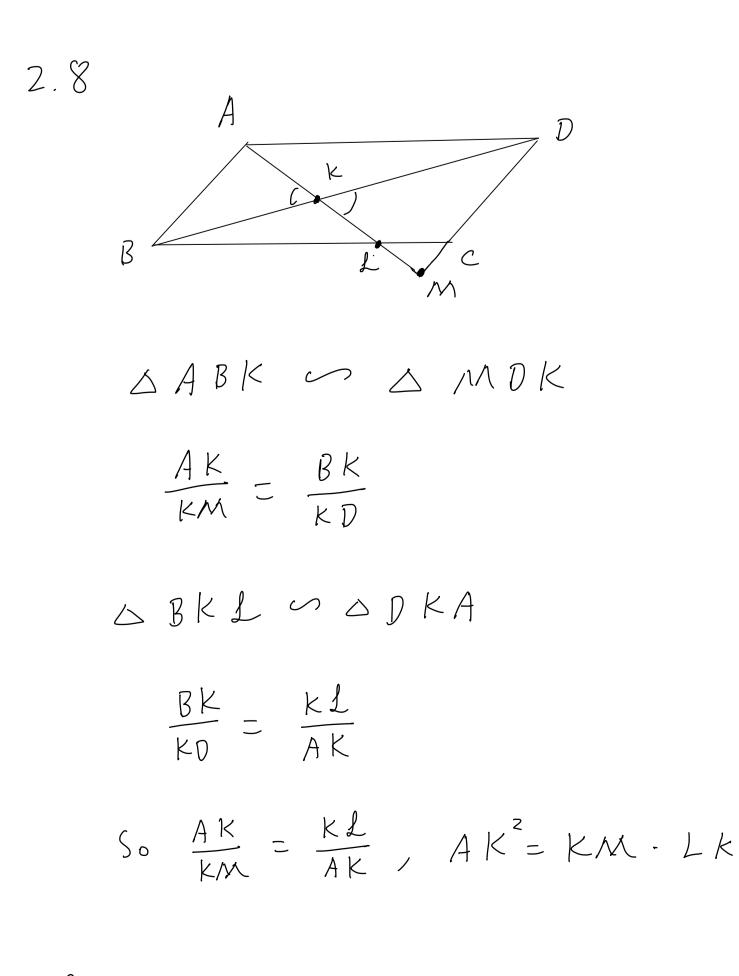
2.6

$$PY = 4$$

2.7



It's a rhombus when AC = BDIt's a square when AC=BD, ACIBD



$$\frac{FM}{FE} = \frac{FQ}{FP} = \frac{LO}{OC} = \frac{1}{3}$$
(Since LC and
AK are medians)

