ORMC AMC 10/12 Group
 Winter, Week 1: Trigonometry

Jan 7, 2024

1 Warm-up Exercises

1. Compute

$$
\frac{\sin (1) \sin (2) \cdots \sin (89)}{\cos (1) \cos (2) \cdots \cos (89)}
$$

2. If $\sin (x)=\frac{60}{61}$, what is $\cos (x)$? In general, if $0<x<90$, what is $\cos (x)$ in terms of $\sin (x)$?
3. (1988 AHSME \#13) If $\sin (x)=3 \cos (x)$ then what is $\sin (x) \cdot \cos (x)$?
(Hint: recall that $\tan (x)=\sin (x) / \cos (x)$.)
4. (1999 AHSME \#15) Let C be an acute angle such that $\frac{1}{\cos (C)}-\tan (C)=\frac{1}{2}$. Find $\frac{1}{\cos (C)}+\tan (C)$.

2 Theorems

We know that the area of the triangle below is $\frac{1}{2} a \cdot h$. Alternatively, since the height h makes right triangles, we can express it in terms of trig formulas to get a different area formula:

$$
h=b \cdot \sin (C) \Longrightarrow K=\frac{1}{2} a \cdot b \sin (C)
$$

We can get the same area by doing this for the other angles A and B, and then multiplying through by $\frac{2}{a b c}$ gives us the extended Law of Sines:

$$
K=\frac{1}{2} a b \sin (C)=\frac{1}{2} b c \sin (A)=\frac{1}{2} a c \sin (B) \Longrightarrow \frac{2 K}{a b c}=\frac{\sin (C)}{c}=\frac{\sin (A)}{a}=\frac{\sin (B)}{b}
$$

And since h makes two right triangles, we can use the pythagorean theorem to get two equivalent expressions of h^{2}. If we equate these expressions, noting that $C D=b \cos (C)$, we get the Law of Cosines:

$$
\begin{gathered}
h^{2}=b^{2}-(b \cos (C))^{2}, \quad h^{2}=c^{2}-(a-b \cos (C))^{2} \\
\Longrightarrow b^{2}-b^{2} \cos ^{2}(C)=c^{2}-a^{2}+2 a b \cos (C)-b^{2} \cos ^{2}(C) \Longrightarrow a^{2}+b^{2}=c^{2}-2 a b \cos (C)
\end{gathered}
$$

Consider the following diagram, where we define $a=m+n$:

The cevian $A D$ gives us two triangles $A B C$ and $A D C$ which share angle C. So, the law of cosines gives us two equivalent expressions for $\cos (C)$. Equating these, we get Stewart's Theorem:

$$
\begin{gathered}
\cos (C)=\frac{a^{2}+b^{2}-c^{2}}{2 a b}, \quad \cos (C)=\frac{n^{2}+b^{2}-c^{2}}{2 n b}, \\
\Longrightarrow \frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{n^{2}+b^{2}-d^{2}}{2 n b} \Longrightarrow n a^{2}+n b^{2}-n c^{2}=a n^{2}+a b^{2}-a d^{2} \\
\Longrightarrow n a(a-n)+a d^{2}=(a-n) b^{2}+n c^{2} \Longrightarrow m a n+a d^{2}=m b^{2}+n c^{2}
\end{gathered}
$$

3 Exercises

1. In triangle $A B C, A B=13, B C=14$, and $A C=15$. Point P is on $B C$ so that $A P$ is perpendicular to $B C$. What is the length of $B P$?
2. In triangle $A B C, A B=13, A=75$, and $B=45$. What are the perimeter and area of $A B C$?
3. (1963 AHSME \#34) In $\triangle A B C$, side $a=\sqrt{3}$, side $b=\sqrt{3}$, and side $c>3$. Let x be the largest number such that the magnitude, in degrees, of the angle opposite side c exceeds x. Which of the following is x ?
(A) 150°
(B) 120°
(C) 105°
(D) 90°
(E) 60°
4. (1987 AIME \#9) Triangle $A B C$ has right angle at B, and contains a point P for which $P A=10$, $P B=6$, and $\angle A P B=\angle B P C=\angle C P A$. Find $P C$.

5. (2003 AMC 12B \#21) An object moves 8 cm in a straight line from A to B, turns at an angle α, measured in radians and chosen at random from the interval $(0, \pi)$, and moves 5 cm in a straight line to C. What is the probability that $A C<7$?
6. (2002 AMC 12B $\# \mathbf{2 3}$) In $\triangle A B C$, we have $A B=1$ and $A C=2$. Side $\overline{B C}$ and the median from A to $\overline{B C}$ have the same length. What is $B C$?
7. (2001 AIME I \#4) In triangle $A B C$, angles A and B measure 60 degrees and 45 degrees, respectively. The bisector of angle A intersects $\overline{B C}$ at T, and $A T=24$. The area of triangle $A B C$ can be written in the form $a+b \sqrt{c}$, where a, b, and c are positive integers, and c is not divisible by the square of any prime. Find $a+b+c$.
8. (2006 AIME I \#8) Hexagon $A B C D E F$ is divided into five rhombuses, $\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}$, and \mathcal{T}, as shown. Rhombuses $\mathcal{P}, \mathcal{Q}, \mathcal{R}$, and \mathcal{S} are congruent, and each has area $\sqrt{2006}$. Let K be the area of rhombus \mathcal{T}. Given that K is a positive integer, find the number of possible values for K.

9. (2012 AMC 12A \#16) Circle C_{1} has its center O lying on circle C_{2}. The two circles meet at X and Y. Point Z in the exterior of C_{1} lies on circle C_{2} and $X Z=13, O Z=11$, and $Y Z=7$. What is the radius of circle C_{1} ?
10. (2003 AIME I \#7) Point B is on $\overline{A C}$ with $A B=9$ and $B C=21$. Point D is not on $\overline{A C}$ so that $A D=C D$, and $A D$ and $B D$ are integers. Let s be the sum of all possible perimeters of $\triangle A C D$. Find s.
11. (2017 AMC 12B \#15) Let $A B C$ be an equilateral triangle. Extend side $\overline{A B}$ beyond B to a point B^{\prime} so that $B B^{\prime}=3 \cdot A B$. Similarly, extend side $\overline{B C}$ beyond C to a point C^{\prime} so that $C C^{\prime}=3 \cdot B C$, and extend side $\overline{C A}$ beyond A to a point A^{\prime} so that $A A^{\prime}=3 \cdot C A$. What is the ratio of the area of $\triangle A^{\prime} B^{\prime} C^{\prime}$ to the area of $\triangle A B C$?
12. (2019 AIME I \#3) In $\triangle P Q R, P R=15, Q R=20$, and $P Q=25$. Points A and B lie on $\overline{P Q}$, points C and D lie on $\overline{Q R}$, and points E and F lie on $\overline{P R}$, with $P A=Q B=Q C=R D=R E=P F=5$. Find the area of hexagon $A B C D E F$.
13. (2019 AMC 12A \#19) In $\triangle A B C$ with integer side lengths, $\cos A=\frac{11}{16}, \cos B=\frac{7}{8}$, and $\cos C=-\frac{1}{4}$. What is the least possible perimeter for $\triangle A B C$?
14. (2022 AMC 10B $\# 20$) Let $A B C D$ be a rhombus with $\angle A D C=46^{\circ}$. Let E be the midpoint of $\overline{C D}$, and let F be the point on $\overline{B E}$ such that $\overline{A F}$ is perpendicular to $\overline{B E}$. What is the degree measure of $\angle B F C$?
15. (2013 AMC 10A \#23) In $\triangle A B C, A B=86$, and $A C=97$. A circle with center A and radius $A B$ intersects $\overline{B C}$ at points B and X. Moreover $\overline{B X}$ and $\overline{C X}$ have integer lengths. What is $B C$?
16. (2013 AIME II \#13) In $\triangle A B C, A C=B C$, and point D is on $\overline{B C}$ so that $C D=3 \cdot B D$. Let E be the midpoint of $\overline{A D}$. Given that $C E=\sqrt{7}$ and $B E=3$, the area of $\triangle A B C$ can be expressed in the form $m \sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. Find $m+n$.
17. (2018 AMC 12B \#25) Circles ω_{1}, ω_{2}, and ω_{3} each have radius 4 and are placed in the plane so that each circle is externally tangent to the other two. Points P_{1}, P_{2}, and P_{3} lie on ω_{1}, ω_{2}, and ω_{3} respectively such that $P_{1} P_{2}=P_{2} P_{3}=P_{3} P_{1}$ and line $P_{i} P_{i+1}$ is tangent to ω_{i} for each $i=1,2,3$, where $P_{4}=P_{1}$. See the figure below. The area of $\triangle P_{1} P_{2} P_{3}$ can be written in the form $\sqrt{a}+\sqrt{b}$ for positive integers a and b. What is $a+b$?

18. (2020 AMC 12A \#24) Suppose that $\triangle A B C$ is an equilateral triangle of side length s, with the property that there is a unique point P inside the triangle such that $A P=1, B P=\sqrt{3}$, and $C P=2$. What is s ?
19. (2006 AIME I \#14) A tripod has three legs each of length 5 feet. When the tripod is set up, the angle between any pair of legs is equal to the angle between any other pair, and the top of the tripod is 4 feet from the ground. In setting up the tripod, the lower 1 foot of one leg breaks off. Let h be the height in feet of the top of the tripod from the ground when the broken tripod is set up. Then h can be written in the form $\frac{m}{\sqrt{n}}$, where m and n are positive integers and n is not divisible by the square of any prime. Find $\lfloor m+\sqrt{n}\rfloor$.
