## OLGA RADKO MATH CIRCLE, WINTER 2024: ADVANCED 3

## FERNANDO FIGUEROA AND JOAQUÍN MORAGA

## Worksheet 1:

Let $\mathbb{F}$ be a field. The Projective Space $\mathbb{P}_{\mathbb{F}}^{n}$ is defined to be the set of points with coordinates $\left[x_{0}: x_{1}: \ldots: x_{n}\right]$, with $x_{i} \in \mathbb{F}$ not all of them equal to 0 , where two sets of coordinates $\left[x_{0}: \ldots: x_{n}\right]$ and $\left[y_{0}: \ldots y_{n}\right]$ define the same point if there exists a constant $\lambda \in \mathbb{F}$, such that for all $i$ :

$$
x_{i}=\lambda y_{i} .
$$

For example, in $\mathbb{P}_{\mathbb{F}_{3}}^{2}$ the coordinates $[0: 1: 0]$ and $[0: 2: 0]$ define the same point.
Problem 1.0: Count how many points there are in the following projective spaces:
(1) $\mathbb{P}_{\mathbb{F}_{2}}^{2}$
(2) $\mathbb{P}_{\mathbb{F}_{3}}^{2}$
(3) $\mathbb{P}_{\mathbb{F}_{2}}^{3}$
(4) $\mathbb{P}_{\mathbb{F}_{q}}^{1}$

Solution 1.0:

Remember that homogeneous polynomials of degree $d$ are polynomials whose nonzero terms are all of degree $d$.
The space $\mathbb{P}_{\mathbb{F}}^{2}$ is called the projective plane over $\mathbb{F}$ and the space $\mathbb{P}_{\mathbb{F}}^{1}$ is called the projective line over $\mathbb{F}$. Lines in a projective plane are defined by the zero-sets of homogeneous linear equations, i.e. the points $\left[x_{0}: x_{1}: x_{2}\right]$ of a line are the solutions of an equation:

$$
a x_{0}+b x_{1}+c x_{2}=0
$$

Where $a, b, c$ are in $\mathbb{F}$
An example of a line in $\mathbb{P}_{\mathbb{F}_{3}}^{2}$ are the points that satisfy the equation $x_{1}+2 x_{2}=0$, which have coordinates $\{[1: 1: 0],[1: 1: 1],[1: 1: 2],[0: 0: 1]\}$.
Problem 1.1: For the following lines write down the list of their points :

- $x_{0}+x_{1}+x_{2}=0$ in $\mathbb{P}_{\mathbb{F}_{2}}^{2}$
- $x_{0}+x_{1}+x_{2}=0$ in $\mathbb{P}_{\mathbb{F}_{3}}^{2}$
- $x_{0}+x_{1}+x_{2}=0$ in $\mathbb{P}_{\mathbb{F}_{5}}^{2}$

How many points does a line in $\mathbb{P}_{\mathbb{F}_{q}}^{2}$ have?

## Solution 1.1:

Problem 1.2: How many different points are there in $\mathbb{P}_{\mathbb{F}_{q}}^{2}$ ?
How many different lines are there in $\mathbb{P}_{\mathbb{F}_{q}}^{2}$ ?

## Solution 1.2:

Problem 1.3: Given one fixed point in $\mathbb{P}_{\mathbb{F}_{5}}^{2}$. How many different lines pass through it? How many lines pass through a fixed point in $\mathbb{P}_{\mathbb{F}_{q}}^{2}$ ? Solution 1.3:

Two different lines in $\mathbb{P}_{\mathbb{F}_{q}}^{2}$ always intersect in exactly one point and given two points exactly one line passes through them. You may use this fact freely.

A line arrangement in $\mathbb{P}_{\mathbb{F}}^{2}$ is a (finite) set of lines and the set of points of intersection of them.
Problem 1.4: Can you find line arrangements with exactly $0,1,2$ and 3 points?
Can you classify the possible line arrangements with at most 3 points?
Solution 1.4:

Problem 1.5: Can you find different line arrangements where there are no points contained in exactly two lines? Can you do so in $\mathbb{P}_{\mathbb{R}}^{2}$ ?
Solution 1.5:

In general a curve in $\mathbb{P}_{\mathbb{F}_{q}}^{2}$ is given by the zero-set of a homogeneous polynomial.
The degree of a curve is the minimal $d$ such that the curve is the zero-set of a homogeneous polynomial of degree $d$.
Problem 1.6: A line could also be given as the zero-set of a homogeneous polynomial of degree larger than one, can you give an example of this phenomenon?

Do all degree $d$ curves in $\mathbb{P}_{\mathbb{F}_{q}}^{2}$ have the same number of points?

## Solution 1.6:

The projective plane $\mathbb{P}_{\mathbb{F}}^{2}$ can be split into a copy of $\mathbb{F}^{2}$ given by the points with coordinates $\left[x_{0}: x_{1}: 1\right]$ and a projective line $\mathbb{P}_{\mathbb{F}}^{1}$ given by the points with coordinates $\left[x_{0}: x_{1}: 0\right]$.

Similarly a projective line $\mathbb{P}_{\mathbb{F}}^{1}$ can be split into a copy of $\mathbb{F}^{1}$ given by the points with coordinates $\left[x_{0}: 1\right]$ and a points with coordinate $[1: 0]$

## Problem 1.7:

- Explain why this covers all the possible points of $\mathbb{P}_{\mathbb{F}}^{2}$
- Apply these same logic to decompose $\mathbb{P}_{\mathbb{F}}^{n}$ into affine spaces (i.e. spaces of the form $\mathbb{F}^{i}$ ).
- How many points are there in the space $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ ?


## Solution 1.7:

Problem 1.8: Can line arrangements have fewer points than lines?
Can a line arrangement with at least two points have fewer points than lines?
Can you classify all the line arrangements with fewer points than lines? Solution 1.8:

Problem 1.9: Can you classify all the line arrangements with the same number of lines than points? Solution 1.9:
Problem 1.10: Let $p$ and $q$ be different prime numbers. Prove that the line arrangement $\mathcal{L}$ constructed by all the lines in $\mathbb{P}_{\mathbb{F}_{p}}^{2}$ does not exist in $\mathbb{P}_{\mathbb{F}_{q}}^{2}$, i.e. for any line arrangement $\mathcal{K}$ in $\mathbb{P}_{\mathbb{F}_{q}}^{2}$ there does not exist a bijection between $\mathcal{L}$ and $\mathcal{K}$ sending lines to lines and points to points, respecting the inclusions.
Solution 1.10:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

