OLGA RADKO MATH CIRCLE, WINTER 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet 1:

Let \mathbb{F} be a field. The *Projective Space* $\mathbb{P}_{\mathbb{F}}^n$ is defined to be the set of points with coordinates $[x_0 : x_1 : \ldots : x_n]$, with $x_i \in \mathbb{F}$ not all of them equal to 0, where two sets of coordinates $[x_0 : \ldots : x_n]$ and $[y_0 : \ldots : y_n]$ define the same point if there exists a constant $\lambda \in \mathbb{F}$, such that for all *i*:

$$x_i = \lambda y_i$$

For example, in $\mathbb{P}^2_{\mathbb{F}_3}$ the coordinates [0:1:0] and [0:2:0] define the same point. **Problem 1.0:** Count how many points there are in the following projective spaces:

(1) $\mathbb{P}^2_{\mathbb{F}_2}$ (2) $\mathbb{P}^2_{\mathbb{F}_3}$ (3) $\mathbb{P}^3_{\mathbb{F}_2}$ (4) $\mathbb{P}^1_{\mathbb{F}_q}$

Solution 1.0:

Remember that homogeneous polynomials of degree d are polynomials whose nonzero terms are all of degree d.

The space $\mathbb{P}^2_{\mathbb{F}}$ is called the *projective plane over* \mathbb{F} and the space $\mathbb{P}^1_{\mathbb{F}}$ is called the *projective line over* \mathbb{F} . Lines in a projective plane are defined by the zero-sets of homogeneous linear equations, i.e. the points $[x_0:x_1:x_2]$ of a line are the solutions of an equation:

$$ax_0 + bx_1 + cx_2 = 0.$$

Where a, b, c are in \mathbb{F}

An example of a line in $\mathbb{P}^2_{\mathbb{F}_3}$ are the points that satisfy the equation $x_1 + 2x_2 = 0$, which have coordinates $\{[1:1:0], [1:1:1], [1:1:2], [0:0:1]\}$.

Problem 1.1: For the following lines write down the list of their points :

- $x_0 + x_1 + x_2 = 0$ in $\mathbb{P}^2_{\mathbb{F}_2}$ $x_0 + x_1 + x_2 = 0$ in $\mathbb{P}^2_{\mathbb{F}_3}$ $x_0 + x_1 + x_2 = 0$ in $\mathbb{P}^2_{\mathbb{F}_5}$

How many points does a line in $\mathbb{P}^2_{\mathbb{F}_q}$ have? Solution 1.1:

 $\mathbf{2}$

Problem 1.2: How many different points are there in $\mathbb{P}^2_{\mathbb{F}_q}$? How many different lines are there in $\mathbb{P}^2_{\mathbb{F}_q}$? Solution 1.2:

Problem 1.3: Given one fixed point in $\mathbb{P}^2_{\mathbb{F}_5}$. How many different lines pass through it? How many lines pass through a fixed point in $\mathbb{P}^2_{\mathbb{F}_q}$? **Solution 1.3:**

Two different lines in $\mathbb{P}^2_{\mathbb{F}_q}$ always intersect in exactly one point and given two points exactly one line passes through them. You may use this fact freely. A line arrangement in $\mathbb{P}^2_{\mathbb{F}}$ is a (finite) set of lines and the set of points of intersection of them. **Problem 1.4:** Can you find line arrangements with exactly 0, 1, 2 and 3 points?

Can you classify the possible line arrangements with at most 3 points? Solution 1.4:

Problem 1.5: Can you find different line arrangements where there are no points contained in exactly two lines? Can you do so in $\mathbb{P}^2_{\mathbb{R}}$? **Solution 1.5:**

In general a *curve* in $\mathbb{P}^2_{\mathbb{F}_q}$ is given by the zero-set of a homogeneous polynomial. The *degree* of a curve is the minimal *d* such that the curve is the zero-set of a homogeneous polynomial of degree d.

Problem 1.6: A line could also be given as the zero-set of a homogeneous polynomial of degree larger than one, can you give an example of this phenomenon?

Do all degree d curves in $\mathbb{P}^2_{\mathbb{F}_q}$ have the same number of points? Solution 1.6:

The projective plane $\mathbb{P}^2_{\mathbb{F}}$ can be split into a copy of \mathbb{F}^2 given by the points with coordinates $[x_0:x_1:1]$ and a projective line $\mathbb{P}^1_{\mathbb{F}}$ given by the points with coordinates $[x_0 : x_1 : 0]$. Similarly a projective line $\mathbb{P}^1_{\mathbb{F}}$ can be split into a copy of \mathbb{F}^1 given by the points with coordinates $[x_0 : 1]$ and a

points with coordinate [1:0]

Problem 1.7:

- Explain why this covers all the possible points of $\mathbb{P}^2_{\mathbb{F}}$
- Apply these same logic to decompose Pⁿ_F into affine spaces (i.e. spaces of the form Fⁱ).
 How many points are there in the space Pⁿ_{Fq}?

Solution 1.7:

8

Problem 1.8: Can line arrangements have fewer points than lines?

Can a line arrangement with at least two points have fewer points than lines?

Can you classify all the line arrangements with fewer points than lines? Solution 1.8:

Problem 1.9: Can you classify all the line arrangements with the same number of lines than points? **Solution 1.9:**

Problem 1.10: Let p and q be different prime numbers. Prove that the line arrangement \mathcal{L} constructed by all the lines in $\mathbb{P}^2_{\mathbb{F}_p}$ does not exist in $\mathbb{P}^2_{\mathbb{F}_q}$, i.e. for any line arrangement \mathcal{K} in $\mathbb{P}^2_{\mathbb{F}_q}$ there does not exist a bijection between \mathcal{L} and \mathcal{K} sending lines to lines and points to points, respecting the inclusions. Solution 1.10:

10

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA. *Email address:* fzamora@math.princeton.edu

UCLA MATHEMATICS DEPARTMENT, Box 951555, Los Angeles, CA 90095-1555, USA. $\mathit{Email}\ address:\ \texttt{jmoraga@math.ucla.edu}$