Worksheet 1:

Let F be a field. The Projective Space \mathbb{P}^n_F is defined to be the set of points with coordinates $[x_0 : x_1 : \ldots : x_n]$, with $x_i \in F$ not all of them equal to 0, where two sets of coordinates $[x_0 : \ldots : x_n]$ and $[y_0 : \ldots : y_n]$ define the same point if there exists a constant $\lambda \in F$, such that for all i:

$$x_i = \lambda y_i.$$

For example, in \mathbb{P}_2^2, the coordinates $[0 : 1 : 0]$ and $[0 : 2 : 0]$ define the same point.

Problem 1.0: Count how many points there are in the following projective spaces:

1. $\mathbb{P}_2^2_F$
2. $\mathbb{P}_3^2_F$
3. $\mathbb{P}_2^3_F$
4. $\mathbb{P}_q^1_F$

Solution 1.0:
Remember that homogeneous polynomials of degree \(d\) are polynomials whose nonzero terms are all of degree \(d\).

The space \(\mathbb{P}_d^2\) is called the projective plane over \(\mathbb{F}\) and the space \(\mathbb{P}_1^1\) is called the projective line over \(\mathbb{F}\). Lines in a projective plane are defined by the zero-sets of homogeneous linear equations, i.e. the points \([x_0 : x_1 : x_2]\) of a line are the solutions of an equation:

\[ax_0 + bx_1 + cx_2 = 0.\]

Where \(a, b, c\) are in \(\mathbb{F}\)

An example of a line in \(\mathbb{P}_2^2\) are the points that satisfy the equation \(x_1 + 2x_2 = 0\), which have coordinates \([1 : 1 : 0], [1 : 1 : 1], [1 : 1 : 2], [0 : 0 : 1]\).

Problem 1.1: For the following lines write down the list of their points:

- \(x_0 + x_1 + x_2 = 0\) in \(\mathbb{P}_2^2\)
- \(x_0 + x_1 + x_2 = 0\) in \(\mathbb{P}_3^3\)
- \(x_0 + x_1 + x_2 = 0\) in \(\mathbb{P}_5^5\)

How many points does a line in \(\mathbb{P}_q^2\) have?

Solution 1.1:
Problem 1.2: How many different points are there in \mathbb{P}_q^2? How many different lines are there in \mathbb{P}_q^2?

Solution 1.2:
Problem 1.3: Given one fixed point in $\mathbb{P}^2_{\mathbb{F}_q}$. How many different lines pass through it?

How many lines pass through a fixed point in $\mathbb{P}^2_{\mathbb{F}_q}$?

Solution 1.3:
Two different lines in \mathbb{P}^2_F always intersect in exactly one point and given two points exactly one line passes through them. You may use this fact freely.

A line arrangement in \mathbb{P}^2_F is a (finite) set of lines and the set of points of intersection of them.

Problem 1.4: Can you find line arrangements with exactly 0, 1, 2 and 3 points?

Can you classify the possible line arrangements with at most 3 points?

Solution 1.4:
Problem 1.5: Can you find different line arrangements where there are no points contained in exactly two lines? Can you do so in $\mathbb{P}^2_\mathbb{R}$?

Solution 1.5:
In general a curve in $\mathbb{P}^2_{\mathbb{F}_q}$ is given by the zero-set of a homogeneous polynomial.

The degree of a curve is the minimal d such that the curve is the zero-set of a homogeneous polynomial of degree d.

Problem 1.6: A line could also be given as the zero-set of a homogeneous polynomial of degree larger than one, can you give an example of this phenomenon?

Do all degree d curves in $\mathbb{P}^2_{\mathbb{F}_q}$ have the same number of points?

Solution 1.6:
The projective plane \(\mathbb{P}^2_F \) can be split into a copy of \(\mathbb{F}^2 \) given by the points with coordinates \([x_0 : x_1 : 1]\) and a projective line \(\mathbb{P}^1_F \) given by the points with coordinates \([x_0 : x_1 : 0]\).

Similarly a projective line \(\mathbb{P}^1_F \) can be split into a copy of \(\mathbb{F}^1 \) given by the points with coordinates \([x_0 : 1]\) and a points with coordinate \([1 : 0]\)

Problem 1.7:

- Explain why this covers all the possible points of \(\mathbb{P}^2_F \)
- Apply these same logic to decompose \(\mathbb{P}^2_F \) into affine spaces (i.e. spaces of the form \(\mathbb{F}^n \)).
- How many points are there in the space \(\mathbb{P}^n_{F_q} \)?

Solution 1.7:
Problem 1.8: Can line arrangements have fewer points than lines?
Can a line arrangement with at least two points have fewer points than lines?
Can you classify all the line arrangements with fewer points than lines? **Solution 1.8:**
Problem 1.9: Can you classify all the line arrangements with the same number of lines than points?

Solution 1.9:

Problem 1.10: Let p and q be different prime numbers. Prove that the line arrangement \mathcal{L} constructed by all the lines in \mathbb{P}_F^2 does not exist in \mathbb{P}_F^2, i.e. for any line arrangement \mathcal{K} in \mathbb{P}_F^2 there does not exist a bijection between \mathcal{L} and \mathcal{K} sending lines to lines and points to points, respecting the inclusions.

Solution 1.10: