Olympiads: Generating Functions 2

ORMC

$12 / 10 / 23$

Problem 0.1. Fix n. If $\sigma=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a permutation of $(1,2, \ldots, n)$, an inversion of σ is a pair $i<j$ with $a_{j}<a_{i}$.

Find a generating function for the sequence $\left(a_{k}\right)_{0}^{\infty}$ where a_{k} is the number of permutations of $(1, \ldots, n)$ with exactly k inversions.

1 Infinite Products

A lot of proofs, going back to at least Euler, make use of some kind of infinite product. Like with infinite sums, a lot of these proofs are unrigorous by modern standards, but a lot of them can be fixed with limits. If $P_{1}(x), P_{2}(x), P_{3}(x), \ldots$ are power series, and so is $P(x)$, then we say that $\lim _{n} P_{n}(x)=P(x)$ when for every k, there is some m such that if $n>m$, the x^{k} term of $P_{n}(x)$ is the same as the x^{k} term of $P(x)$.

We can also define infinite products this way, by saying

$$
P_{1}(x) P_{2}(x) P_{3}(x) \cdots=\lim _{n} P_{1}(x) \ldots P_{n}(x)
$$

whenever that limit exists.
Problem 1.1. What is the infinite product $(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right) \ldots$?
Problem 1.2. A partition of n is a list of numbers $a_{1} \leq a_{2} \leq \cdots \leq a_{k}$ with $a_{1}+a_{2}+\cdots+a_{k}=n$.
Find a generating function for the sequence $\left(a_{n}\right)_{0}^{\infty}$ where a_{n} is the number of partitions of n, expressed as an infinite product.

Problem 1.3. A partition $\left(a_{1}, \ldots, a_{k}\right)$ is called odd when each a_{i} is odd, and has distinct parts when $a_{1}<\cdots<a_{k}$.

Use generating functions to show that for every n, the number of odd partitions of n equals the number partitions of n with distinct parts.

2 Competition Problems

Problem 2.1 (USAMO 1996 Problem 6). Determine (with proof) whether there is a subset X of the nonnegative integers with the following property: for any nonnegative integer n there is exactly one solution of $a+2 b=n$ with $a, b \in X$.
(The original USAMO question asked about all integers, not just nonnegative - this is harder, but still approachable with generating functions.)

Problem 2.2 (IMO Shortlist 1998). Let a_{0}, a_{1}, \ldots be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_{i}+2 a_{j}+4 a_{k}$, where i, j, k are not necessarily distinct. Determine $a_{1} 998$.

Problem 2.3 (USAMO 1986 Problem 5). By a partition π of an integer $n \geq 1$, we mean here a representation of n as a sum of one or more positive integers where the summands must be put in nondecreasing order. (E.g., if $n=4$, then the partitions π are $1+1+1+1,1+1+2,1+3,2+2$, and 4).

For any partition π, define $A(\pi)$ to be the number of 1 's which appear in π, and define $B(\pi)$ to be the number of distinct integers which appear in π (E.g., if $n=13$ and π is the partition $1+1+2+2+2+5$, then $A(\pi)=2$ and $B(\pi)=3)$.

Prove that, for any fixed n, the sum of $A(\pi)$ over all partitions of π of n is equal to the sum of $B(\pi)$ over all partitions of π of n.

Problem 2.4 (USAMO 2017 Problem 2). Let $m_{1}, m_{2}, \ldots, m_{n}$ be a collection of n distinct positive integers. For any sequence of integers $A=\left(a_{1}, \ldots, a_{n}\right)$ and any permutation $w=w_{1}, \ldots, w_{n}$ of m_{1}, \ldots, m_{n}, define an A-inversion of w to be a pair of entries w_{i}, w_{j} with $i<j$ for which one of the following conditions holds:

$$
\begin{aligned}
& a_{i} \geq w_{i}>w_{j}, \\
& w_{j}>a_{i} \geq w_{i}, \\
& w_{i}>w_{j}>a_{i} .
\end{aligned}
$$

Show that, for any two sequences of integers $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$, and for any positive integer k, the number of permutations of m_{1}, \ldots, m_{n} having exactly $k A$-inversions is equal to the number of permutations of m_{1}, \ldots, m_{n} having exactly $k B$-inversions.
(The original USAMO problem allowed the numbers m_{1}, \ldots, m_{n} to not necessarily be distinct.)

