Intermediate 1

Functions and Cardinality

1 Functions

Let X, Y be sets. A **function** from X to Y is an assignment to each element in X an element in Y. In other words, a function is a way to move points from the set X to points in another set Y.

Let f be the function moving points from a set X to a set Y. Then we write $f: X \to Y$. This is read as "f is a function from X into Y". Sometimes we use the word "map" instead of "function".

The set X is called the **domain** and the set Y is called the **codomain**.

To show how the function moves points, we usually write the function explicitly. If $x \in X$ and $y \in Y$, we write f(x) = y. We call x the *argument* of the function, and call y the *value* of f(x).

For example, Let $f : \mathbb{N} \to \mathbb{N}$, and f(x) = 2x. What this function does is it takes any natural number, and doubles it. So we have

$$f(0) = 0,$$
 $f(1) = 2,$ $f(2) = 4,$...

Here is another example: Let $f : \mathbb{N} \{0, 1, 2\} \to S$, where S is the set of regular shapes. What f will do is take a number, and send that number to the shape with that many vertices. For example,

$$f(3) = \Delta, \qquad f(4) = \Box, \qquad \dots$$

Problem 1.1. Let C be the set of countries, W be the set of fictional writers, and M be the set of mathematicians. Consider the function $f: C \to W \times M$, where f takes in a country, and outputs an ordered pair of the most famous fictional writer and mathematician born in that country. For example,

f(USA) = (Ernest Hemingway, Michael Freedman)

What do you think f(Russia) is? How about f(Scotland)?

Problem 1.2. Give 2 examples of functions in our daily life.

Problem 1.3. Let $f : \mathbb{Z} \to \mathbb{Z}$ be the function $f(x) = x^2$. What is f(1), f(2), and f(-3)?

Does $f(\pi)$ exists? Why?

Let $f : X \to Y$ be a function. Let A be a subset of our domain, $A \subset X$. Then the **image** of A is the set of everything A gets sent to. This is written as f(A). Using set notation, we have

$$f(A) = \{ f(x) \in Y : x \in X \}.$$

We call f(X), the image of the entire domain, as the image of f.

For example, let $A = \{1, 2, 3\}$. The function $f : A \to \mathbb{Z}$ given by f(x) = 3x has the image

$$f(A) = \{3, 6, 9\}.$$

Note that by definition, the image of a function is always a *sub*set of the codomain, but not necessarily the entire codomain.

Problem 1.4. Consider the function $f : A \to B$ given by the diagram

- What is the domain of f?
- What is the codomain of f?
- What is the image of f?

Problem 1.5. What is $f(\emptyset)$?

Problem 1.6. Let $f : \mathbb{Z} \to \mathbb{Z}$ be the function f(x) = |x|. What is the image of the function?

Is the image the same as the codomain?

A function f is called **surjective**, or we say f is a surjection, if the image of the domain is equal to the codomain;

$$f(X) = Y.$$

Another way to say this is to say that f is an onto function. In this case, instead of saying "f is a map from X into Y", we would say "f is a map from X onto Y".

For example, for the two functions below, the function on the left is surjective, while the function on the right is not.

Problem 1.7. Which of the function(s) below are surjective? Why?

- (a) $f : \mathbb{Z} \to \mathbb{Z}$ by $f(x) = x^2$.
- (b) $f : \mathbb{Z} \to \mathbb{N}$ by $f(x) = x^2$.
- (c) $f : \mathbb{R} \to \mathbb{Z}$ by $f(x) = \lfloor x \rfloor$, where $\lfloor x \rfloor$ means the biggest integer not greater than x.

A function f is called **injective**, or we say f is an injection, if no two points in X gets sent to the same point in Y.

To prove a function is injective, assume f(a) = f(b), then prove that a = b. By contrapositive, this is the same as saying if $a \neq b$, then $f(a) \neq f(b)$. Another way to say this is to say that f is a *one-to-one* function, or that f is one-to-one.

A function f is called **bijective**, or we say f is a bijection, if f is both injective and surjective. Another way to say this is to say that f is a *one-to-one correspondence*. That is, f takes points from X, and maps it to points to Y, such that each point in X is sent to a unique point in Y, and every point in Y is the image of some point in X.

Problem 1.8. In our real life, give an example of a function that is injective but not surjective. Then give an example that is surjective but not injective.

Problem 1.9. Give a subset X of \mathbb{R} such that the function $f: X \to \mathbb{R}$ by $f(x) = x^2$ is injective. Try to make your subset X as big as possible.

Problem 1.10. Let $f : X \to Y$ be a function, and let $A, B \subset X$. Prove that

$$f(A \cup B) = f(A) \cup f(B).$$

Problem 1.11. Suppose $f : X \to Y$ is injective, and $A, B \subset X$. Prove that

 $f(A \cap B) = f(A) \cap f(B).$

Problem 1.12. Give an example of f not injective such that $f(A \cap B) \neq f(A) \cap f(B)$.

Problem 1.13. Suppose $f : X \to Y$ is injective. Show that there is a surjective function $g : Y \to X$.

Problem 1.14. Suppose $f : X \to Y$ is surjective. Show that there is an injective function $g : Y \to X$.

Problem 1.15. Suppose $f : X \to Y$ is bijective. Show that there is a bijective function $g : Y \to X$.

Problem 1.16. Find a bijective function $f : \mathbb{N} \to \mathbb{Z}$.

2 Cardinality

Intuitively, the cardinality of a set is how "big" it is. If A is a set, we let |A| denote its cardinality, read "the cardinality of A". We have previously discussed the cardinality of finite sets, where we said the cardinality of a finite set is the number of elements in it. Notice that when we count the elements in a set, we are just assigning the numbers $1, 2, \ldots$ to the elements in the set. Let us formalize this notion:

Let \mathbb{N}_n be the first *n* counting numbers, i.e. $\mathbb{N}_n = \{1, \ldots, n\}$. We define $|\mathbb{N}_n| = n$. We also say that a set *A* has **cardinality** *n*, or |A| = n, if there is a bijection between \mathbb{N}_n and *A*. We will use this definition of cardinality for the rest of the handout. Fact: if there is a bijection between *A* and \mathbb{N}_n for some *n*, then there is no bijection between *A* and \mathbb{N}_m for any $m \neq n$. That is, the cardinality of a finite set is unique.

Problem 2.1. Let A and B be finite sets. Prove that |A| = |B| if and only if there is a bijection between A and B.

Problem 2.2. Let A and B be finite sets. Prove that $|A| \leq |B|$ if and only if there is an injection from A to B.

Problem 2.3. Let A and B be finite sets. Prove that $|A| \ge |B|$ if and only if there is a surjection from A to B.

Now, let us generalize to infinite sets. A set A is called **infinite** if it is not finite. That is, there is no bijection from A to \mathbb{N}_n for any n. Let A and B be sets (finite or infinite). We write:

- $|A| \leq |B|$ if there is an injection from A to B.
- |A| < |B| if there is an injection from A to B, but no bijection.
- $|A| \ge |B|$ if there is a surjection from A to B.
- |A| > |B| if there is a surjection from A to B, but no bijection.

There are two types of infinities we care about: countable infinity and uncountable infinity.

A set A is called **countably infinite** if there is a bijection from A to N. The name countable comes from the fact that N is the set of counting numbers. That is, if A is countable, then it is possible to "count" the elements of A. We define $|\mathbb{N}| = \aleph_0$.

Problem 2.4. Show that \mathbb{N} is the "smallest" infinite set. That is, given an infinite set A, construct a surjection from A to \mathbb{N} .

Problem 2.5. Show that $|\mathbb{N}| = |\mathbb{Z}|$.

Problem 2.6. Show that $|\mathbb{N}| = |\mathbb{N} \times |\mathbb{N}|$.

Problem 2.7. Show that $|\mathbb{N}| = |\mathbb{Q}|$.

A set A is said to be **uncountably infinite**, or uncountable, if A is infinite but not countable.

Problem 2.8 (Challenge). Prove that $|\mathbb{R}| > |\mathbb{N}|$