OLGA RADKO MATH CIRCLE: ADVANCED 3

FERNANDO FIGUEROA, ROHAN JOSHI, JOAQUÍN MORAGA, AND CALEB PARTIN

Fall Final Exam I

Name: _____

Problem 1	/10
Problem 2	/10
Problem 3	/10
Problem 4	/10
Problem 5	/10
Total	/50

Say if the following statements are True or False. Prove the True ones and give a counterexample for the False ones

Problem 1:

____ The intersection of two ideals is an ideal.

____ The intersection of two subrings of a ring R is a subring of R.

Solution 1:

 2

Problem 2:

- ____ The set of all non-invertible elements in a field forms an ideal
- ____ The set of all non-invertible elements in a ring forms an ideal.

Solution 2:

Problem 3:

- ____ A ring R is a field if and only if its only ideals are $\{0\}$ and R.
- ____ A ring R is a field if and only if it contains no subring other than itself.

Solution 3:

Problem 4:

- ____ If F is a field and R is a subring of F, then R is a field.
- ____ If R is a ring that is not a field, and S is a subring of R. Then S is not a field.

Solution 4:

Problem 5:

- ____ If R and S are rings containing no zero-divisors, then $R\times S$ contains no zero-divisor.
- ____ If R is a finite ring containing no zero divisors, then R is a field.

Solution 5:

6

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA. *Email address:* fzamora@math.princeton.edu

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA. *Email address:* rohansjoshi@math.ucla.edu

UCLA MATHEMATICS DEPARTMENT, BOX 951555, LOS ANGELES, CA 90095-1555, USA. *Email address:* jmoraga@math.ucla.edu

UCLA MATHEMATICS DEPARTMENT, LOS ANGELES, CA 90095-1555, USA. $Email\ address:\ \tt ctpartin@math.ucla.edu$