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1. Warmup: Modular Arithmetic

Let us recall some basics of modular arithmetic.

Definition 1 (modulo). Let a, b be integers and n a positive integer. We say that a is congruent to b
modulo n (and we write a ≡ b mod p) if n divides a− b. We write a mod n to denote the remainder of
a divided by n.

Problem 1. Let a, b be integers and n a positive integer. Show that a + b mod n ≡ (a mod n) + (b
mod n) mod n. Is it true that a+ b mod n ≡ (a mod n) + (b mod n)?

Problem 2. Let a, b be integers and n a positive integer. Prove that (a mod n)(b mod n) mod n = ab
mod n. Is it true that (a mod n)(b mod n) = ab mod n?

Problem 3. (1) To what number between 0 and 6 inclusive is the product 11 · 18 · 2322 · 13 · 19
congruent modulo 7?

(2) To what number between 0 and 12 inclusive is the product 3 · 7 · 11 · 17 · 23 · 29 · 113 congruent
modulo 13?

Problem 4. Let z be a positive integer. We can write z as a sum z = a0 + 10a1 + 102a2 + · · ·+ 10nan,
where each ai is the i-th digit of a (in base 10).

(1) Show that z is divisible by 3 if and only if the sum a0 + a1 + · · ·+ an is divisible by 3.
(2) Show that z is divisible by 11 if and only if the sum a0 − a1 + a2 − a3 · · · ± an is divisible by 11.
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2. Quadratic Reciprocity

Now we can start talking about Quadratic Reciprocity. This method was developed intuitively (not
actually in the modern form you will see here) by some great number theorists of the 17th and 18th century
including Fermat, Euler, Lagrange, and Legendre. They began by looking at the quadratic polynomials
modulo a prime p and trying to solve it in the most general forms. Namely, they did not try to solve

ax2 + bx+ c = 0

in the real or complex numbers, which was already known, but rather

ax2 + bx+ c ≡ 0 mod p where p is a prime number.

We will call such an equation solvable if there exists an integer x0 such that ax20 + bx0 + c ≡ 0 mod p.
Although they had little success solving this problem, these mathematicians stated some important con-
jectures in this field that would broadened the field of number theory. A major breakthrough in this
direction came when Gauss (in 1798) proved what is now called the Quadratic Reciprocity Law: if p, q
are prime numbers and if p ≡ 1 mod 4, then

x2 − p ≡ 0 mod q is solvable if and only if x2 − q ≡ 0 mod p is solvable

and if p, q ≡ 3 mod 4, then

x2 − p ≡ 0 mod q is solvable if and only if x2 − q ≡ 0 mod p is not solvable

We will prove this theorem later, but in a more modern formulation. Now let’s discuss some of the basics
that will lead up to the proof of this theorem.

Theorem (Fundamental Theorem of Arithmetic). Every nonzero integer n can be written uniquely as
n = ±pa11 pa22 . . . parr where r is a positive integer greater than or equal to 1, p1, . . . pr distinct prime numbers
and a1, . . . ar are positive integers.

The last (and non-trivial) result that we have to recall in order to proceed further is Fermat’s Little
Theorem:

Theorem (Fermat’s Little Theorem). If a is an integer and p is a prime, then ap ≡ a mod p.

Problem 5. Prove Fermat’s Little Theorem. Hint: use induction on a and the binomial theorem.

Definition 2 (quadratic residue). Let a be an integer and p a prime. We say a is a quadratic residue
mod p if x2−a mod p is solvable, and a quadratic nonresidue mod p if x2−a mod p is not solvable.

Now we state our first theorem:

Theorem. Given a prime p and an integer a, the equation x2 ≡ a has zero, one, or two solutions modulo
p.

You can use this theorem without proof. Now we are ready to define the Legendre’s symbol:

Definition 3 (Legendre Symbol). Given a prime number p and an integer a, the Legendre symbol(
a
p

)
is defined as(
a
p

)
=

 1, if p ∤ a and a is a quadratic residue mod p;
−1, if p ∤ a and a is a quadratic nonresidue mod p;
0, if p | a.

Problem 6. Show that
(
x2

p

)
= 1 for each prime p and integer x, p ∤ x.

From now on, unless otherwise stated, p is always an odd prime and a an integer.

Problem 7. Show that if a is a quadratic residue modulo p, then a+ kp is as well for any integer k.
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Thus we may regard Legendre’s Symbol as a function from the integers 0 ≤ a < p to the set {−1, 0, 1}.
Fermat’s Little Theorem asserts that if ap ≡ a mod p, so ap−1 ≡ 1 mod p1, which implies a

p−1
2 ≡ ±1

mod p. More precisely:

Theorem (Euler’s Criterion). If a is an integer and p a prime, then a
p−1
2 ≡

(
a
p

)
mod p.

You may use this without proof.

Problem 8. Prove that (
ab

p

)
=

(
a

p

)(
b

p

)
for all integers a, b and prime numbers p.

We also have a corollary:

Corollary 1 (First Supplement of the Quadratic Reciprocity Law). For every prime number p ≥
3,
(
−1
p

)
= (−1)

p−1
2 .

Problem 9. Prove this corollary.

Before we can get to quadratic reciprocity itself, we have to state another intermediate theorem:

Theorem (Second Supplement of the Quadratic Reciprocity Law). We have
(
2
p

)
= (−1)

p2−1
8 . In other

words, 2 is a quadratic residue modulo a prime p ≥ 3 if and only if p ≡ ±1 mod 8.

With all this being said, we conclude with the most important theorem of this part, the Gauss’ Law of
Quadratic Reciprocity:

Theorem. For any different odd primes p and q,(
p

q

)(
q

p

)
= (−1)(

p−1
2 )( q−1

2 )

The proof of this fact is pretty tricky, and it will be ommitted. Nevertheless, this won’t stop us from
using it frequently to deduce other properties about Legendre’s symbol.

3. Exercises

(1) What is
(
1
p

)
if p is a prime number of the form 19k + 3? Is 25 a quadratic residue modulo 79?

Is 26 a quadratic residue modulo 79? Is 11718 a quadratic residue modulo 11719 (trust me, this
number is indeed prime)?

(2) Compute the following Legendre symbols:
(

2
17

)
,
(
13
59

)
,
(
2012
103

)
,(

22012 · 32013 · 52014 · 72015

19

)
(3) In fact, what Gauss proved was

(
2
p

)
= (−1)[

p+1
4 ]. Prove that

(−1)

(
p2−1

8

)
≡

[
p+ 1

4

]
(mod2)

for any odd prime number p, using the theorem that Gauss proved. (Note that [x] is the greatest
integer smaller or equal to x )

(4) Is 23 a square mod 41? Is 15 a square mod 41? (CHMMC, Winter 2010)
(5) Compute the number of primes p less than 100 such that p divides n2 + n+ 1 for some integer n.

(CHMMC, Winter 2010)

1this requires us to know p is prime, as then a is invertible mod p for any a
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(6) Find all the primes p with the property that 7p+ 3p − 4 is a perfect square. (Junior Balkan MO
2007)(Hint: Use Fermat’s Little Theorem)

(7) Prove the following statements:
(a) −2 is a quadratic residue modulo p if and only if p ≡ 1 or p ≡ 3 mod 8;
(b) −3 is a quadratic residue modulo p if and only if p ≡ 1 mod 6;
(c) 3 is quadratic residue modulo p if and only if p ≡ ±1 mod 12;
(d) 5 is a quadratic residue modulo p if and only if p ≡ ±1 mod 10.

(8) Show that there exist infinitely many prime numbers of the form 10k + 9.
(9) Prove that for n ∈ N, every prime divisor p of number n4 − n2 +1 is of the form 12k+1 for some

integer k.

(10) If p is a prime of the form 4k+1, prove that x =
(
p−1
2

)
! is a solution of the congruence x2+1 ≡ 0

mod p.
(11) Show there exists a natural number a <

√
p+ 1 that is a quadratic nonresidue modulo p. (Hint:

Suppose a is a quadratic nonresidue. What can you say about
[ p
a

]
+ 1?

)
(12) (Challenge problem) Prove that an integer a is a quadratic residue modulo every prime number

if and only if a is a perfect square.
(13) Evaluate [

1

2003

]
+

[
2

2003

]
+

[
22

2003

]
+ · · ·+

[
22001

2003

]
(Note that [x] is the greatest integer smaller or equal to x )

4. Generalization: The Jacobi Symbol

Definition 4 (Jacobi Symbol). Let a be an integer and b an odd number, and let b = pα1
1 pα1

2 . . . pαr
r be

the factorization of b onto primes. Jacobis symbol
(
a
b

)
is defined as a product of Legendre’s symbols,

namely

(a
b

)
=

(
a

p1

)α1
(

a

p2

)α2

· · ·
(

a

pr

)αr

If a is a quadratic residue modulo n, then clearly
(
a
n

)
= 1. However the converse is not true.

Problem 10. Find a counterexample to this theorem. That is, find some positive integers a, n so that(
a
n

)
= 1 but a is not a quadratic residue modulo n.

Nevertheless, if
(
a
n

)
= −1, then a is not a quadratic residue modulo n. All this discussion can be

summarized in the following statement:

Theorem. Let a be an integer and b a positive integer, and let b = pα1
1 pα2

2 . . . pαr
r be the factorization of

b onto primes. Then a is a quadratic residue modulo b if and only if a is a quadratic residue modulo pαi
i

for each i = 1, 2, . . . , r.

We will not see the proof of this theorem here. One direction is trivial, namely if there exists an x such
that x2 ≡ a mod n, then clearly the same x satisfies x2 ≡ a (modpαi

i ).

Problem 11. (Challenge problem). If you know the Chinese Remainder Theorem, prove the other
direction of t his theorem.

The most beautiful thing about the Jacobi symbol is that it obeys most of the laws that the Legendre’s
Symbol does.

Theorem. For all integers a, b and odd numbers c, d the following equalities hold:
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(
a+ bc

c

)
=

(a
c

)
(
ab

c

)
=

(a
c

)(
b

c

)
( a

cd

)
=

(a
c

)(a
d

)
Problem 12. Prove the previous theorem.

We also have that the Jacobi symbol obeys the three reciprocity laws, namely

Theorem. For every odd integer a,(
−1

a

)
= (−1)

a−1
2 ,

(
2

a

)
= (−1)

(
a2−1

8

)
and for any two coprime odd integers a, b it holds that(a

b

)(
b

a

)
= (−1)

a−1
2

· b−1
2

5. Exercises

(1) Show that if gcd(ab, nm) = 1, then
(

ab2

nm2

)
=

(
a
n

)
.

(2) Let F (x) =
(
x2 − 17

) (
x2 − 19

) (
x2 − 323

)
. Prove that for each m positive integer, the equation

F (x) ≡ 0 mod m

has a solution x in N. Show that F (x) = 0 doesn’t have any integer solutions.
(3) Let m,n ≥ 3 be positive odd integers. Prove that 2m − 1 doesn’t divide 3n − 1.
(4) Show that if 2n+ 1 and 3n+ 1 are perfect squares, then n is divisible by 40.
(5) Is a natural number uniquely determined by the product of its (positive) divisors?
(6) Show that there are no positive integers x, y, z, t such that x + y + t2 = 4xyz. (Hint: Write the

equation as 4zt2 + 1 = (4zy − 1)(4zx− 1); now look at the Jacobi symbol
(

−z
4yz−1

))
.

(7) (Challenge Problem) Show that the number of quadratic residues modulo pn(n ≥ 1) is equal to[
2n−1 − 1

3

]
+ 2 for p = 2, and

[
pn+1 − 1

2(p+ 1)

]
+ 1 for p ≥ 3

(8) (Challenge Problem) Prove that the equation x2 = y3 − 5 has no integer solutions (x, y).
(9) (Challenge Problem) Prove that 4kxy − 1 does not divide the number xm + yn for any positive

integers x, y, k,m, n.
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