Olympiads: Inequalities

ORMC

$11 / 5 / 23$

Remember to write down your solutions, as proofs. You don't have to start by writing out a full proof to every problem you try, but once you've solved a problem or two, take a few minutes to write out a proof as if this was being graded at an Olympiad.

1 Squares!

When in doubt with inequalities, see if you can make something into a sum of squares, which will be nonnegative, and only 0 when all of the squared things are 0 .

Problem 1.1 (Putnam and Beyond). For which positive integers n does

$$
n x^{4}+4 x+3=0
$$

have a real solution?
Problem 1.2 (BAMO 2000 Problem 3). Let x_{1}, \ldots, x_{n} be positive integers, with $n \geq 2$. Prove that

$$
\left(x_{1}+\frac{1}{x_{1}}\right)\left(x_{2}+\frac{1}{x_{2}}\right) \ldots\left(x_{n}+\frac{1}{x_{n}}\right) \geq\left(x_{1}+\frac{1}{x_{2}}\right)\left(x_{2}+\frac{1}{x_{3}}\right) \ldots\left(x_{n}+\frac{1}{x_{1}}\right) .
$$

Problem 1.3 (Putnam and Beyond). Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that $a_{1}+a_{2}+\cdots+a_{n} \geq$ n^{2} and $a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \leq n^{3}+1$. Prove that $n-1 \leq a_{k} \leq n+1$ for all k.
Problem 1.4. Prove a simple version of AM-GM: if a, b are nonnegative reals, then $\frac{a+b}{2} \geq \sqrt{a b}$.
Problem 1.5. Prove the Cauchy-Schwarz Inequality:
If a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} are real numbers, then

$$
\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} b_{i}\right) \geq\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} .
$$

Also, under what circumstances are these equal?

2 Cauchy-Schwarz

Problem 2.1 (Problem-Solving Through Problems). Let a, b, c be nonnegative reals with $a+b+c=$ 1. Show that

$$
a b+b c+c a \leq \frac{1}{3} .
$$

Problem 2.2 (USAMO 2009 Problem 4). For $n \geq 2$ let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that $\left(a_{1}+a_{2}+\ldots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) \leq\left(n+\frac{1}{2}\right)^{2}$.

Prove that $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq 4 \min \left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

3 AM-GM

Let a_{1}, \ldots, a_{n} be nonnegative real numbers. Then their arithmetic mean is at least as big as their geometric mean:

$$
\frac{a_{1}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} \ldots a_{n}}
$$

If these are equal, then $a_{1}=\cdots=a_{n}$.
The same is true if we use weighted arithmetic and geometric means.
Problem 3.1. Suppose that a, b, c are positive numbers. Prove that:

- $(a+b)(b+c)(c+a) \geq 8 a b c$.
- $a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2} \geq a b c(a+b+c)$.

Problem 3.2 (USAMO 2011 Problem 1). Let a, b, c be positive real numbers such that $a^{2}+b^{2}+$ $c^{2}+(a+b+c)^{2} \leq 4$. Prove that

$$
\frac{a b+1}{(a+b)^{2}}+\frac{b c+1}{(b+c)^{2}}+\frac{c a+1}{(c+a)^{2}} \geq 3
$$

Problem 3.3 (Putnam 2021 Problem B2). Determine the maximum value of the sum

$$
S=\sum_{n=1}^{\infty} \frac{n}{2^{n}}\left(a_{1} \ldots a_{n}\right)^{1 / n}
$$

over all sequences $a_{1}, a_{2}, a_{3}, \ldots$ of nonnegative real numbers satisfying

$$
\sum_{k=1}^{\infty} a_{k}=1
$$

4 Hölder's Inequality

For this problem, you may want to use a souped-up version of Cauchy-Schwarz called Hölder's Inequality. Let $a_{i j}: 1 \leq i \leq m, 1 \leq j \leq n$ and $p_{i}: 1 \leq i \leq m$ be nonnegative reals with $\sum_{i=1}^{m} p_{i}=1$. Then

$$
\prod_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j}\right)^{p_{i}} \geq \sum_{j=1}^{n} \prod_{i=1}^{m} a_{i j}^{p_{i}}
$$

Problem 4.1 (USAMO 2004 Problem 5). Let a, b, and c be positive real numbers. Prove that

$$
\left(a^{5}-a^{2}+3\right)\left(b^{5}-b^{2}+3\right)\left(c^{5}-c^{2}+3\right) \geq(a+b+c)^{3}
$$

Hint: First prove that $x^{5}+1 \geq x^{3}+x^{2}$.

